Quick Start

Borland®]
Delphi~ 6
for Windows

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Refer to the DEPLOY document located in the root directory of your Delphi 6 product for a complete list of files that
you can distribute in accordance with the Delphi License Statement and Limited Warranty.

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

CoPYRIGHT © 1983, 2001 Borland Software Corporation. All rights reserved. All Borland brands and product names
are trademarks or registered trademarks of Borland Software Corporation. Other product names are trademarks or
registered trademarks of their respective holders.

Printed in the U.S.A.

HDE1360WW21000 1EOR0501
0102030405987 65432 1
PDF

Chapter 1

Introduction
Whatis Delphi?
Finding information.
OnlineHelp.
F1 Help
Printed documentation
Developer support services and Web
site. Lo

Typographic conventions

Chapter 2

A tour of the desktop
Starting Delphi.
ThelDE.
The menus and toolbars.
The Component Palette, Form Designer,
and Object Inspector.
The Object TreeView.
The Object Repository.
The Code Editor
CodelInsight.
Class Completion.
Code Browsing
The Diagram page
Viewing formcode.
The Code Explorer.
The Project Manager.
The Project Browser
To-dolists.

Chapter 3
Programming with Delphi

Creating a project
Adding data modules
Building the user interface
Placing components on a form
Setting component properties.
Writing code
Writing event handlers.
Using the VCL and CLX libraries. . .
Compiling and debugging projects
Deploying applications
Internationalizing applications.
Typesof projects
CLX applications

Contents

1-1

oL 14
oL 14

1-2
1-2
1-3

1-4
1-4

2-1
2-1
2-1
22

2-3

2-4
2-5

3-8

iii

Web server applications

Database applications.

BDE Administrator

Data Dictionary
Custom components
DLLs

COM and ActiveX.
Typelibraries.

Chapter 4
Creating a text editor—a tutorial

Starting a new application.
Setting property values.

Adding components to the form

Adding support for a menu and a toolbar
Adding actions to the action manager

Adding standard actions to the

action manager.
Adding images to the image list.
Addingamenu

Adding a toolbar

Clearing the text area (optional)
Writing eventhandlers.

Creating an event handler for the

New command.

Creating an event handler for the

Opencommand

Creating an event handler for the

Save command.

Creating an event handler for the

Save Ascommand.
Creatinga Helpfile.

Creating an event handler for the

Help Contents command

Creating an event handler for the

Help Index command.
Creating an Aboutbox

Completing your application

Chapter 5
Customizing the desktop

Organizing your work area
Arranging menus and toolbars

Docking tool windows
Saving desktop layouts.

SQL Explorer (Database Explorer). .
Database Desktop

Customizing the Component palette 5-5
Arranging the Component palette 5-5
Creating component templates 5-6
Installing component packages. 5-7

Using frames 5-8
Adding ActiveX controls. 5-9

Setting project options. 5-9

Setting default project options 5-9

iv

Specifying project and form templates

asthedefault. 5-9
Adding templates to the Object
Repository 5-10
Setting tool preferences. 5-11
Customizing the Form Designer. 5-11
Customizing the Code Editor 5-12
Customizing the Code Explorer 5-12
Index -1

Introduction

This Quick Start provides an overview of the Delphi development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Delphi.

Chapter 2, “A tour of the desktop” describes the main tools on the Delphi desktop, or
integrated desktop environment (IDE). Chapter 3, “Programming with Delphi”
explains how you use some of these tools to create an application. Chapter 4,
“Creating a text editor—a tutorial” takes you step by step through a tutorial to write
a program for a text editor. Chapter 5, “Customizing the desktop” describes how you
can customize the Delphi IDE for your development needs.

What is Delphi?

Delphi is an object-oriented, visual programming environment for rapid application
development (RAD). Using Delphi, you can create highly efficient applications for
Microsoft Windows 2000, Windows 98, and Windows NT with a minimum of
manual coding. Delphi also provides a simple cross-platform solution when used in
conjunction with Kylix, Borland’s RAD tool for Linux. Delphi provides all the tools
you need to develop, test, and deploy applications, including a large library of
reusable components, a suite of design tools, application and form templates, and
programming wizards.

Finding information

You can find information on Delphi in the following ways, described in this chapter:

* Online Help
¢ Printed documentation
¢ Borland developer support services and Web site

Introduction 1-1

Finding information

For information about new features in this release, refer to What's New in the online
Help Contents and to the www.borland.com Web site.

Online Help

The online Help system provides detailed information about user interface features,
language implementation, programming tasks, and the components in the Visual
Component Library Reference (VCL) and Borland Component Library for Cross
Reference (CLX). It includes all the material in the Delphi Developer’s Guide, Object
Pascal Language Guide, and a host of Help files for other features bundled with Delphi.

To view the table of contents, choose Help | Delphi Help and Help | Delphi Tools, and
click the Contents tab. To look up VCL or CLX objects or any other topic, click the
Index or Find tab and type your request.

F1Help

You can get context-sensitive Help on the VCL, CLX, and any part of the
development environment, including menu items, dialog boxes, toolbars, and
components by selecting the item and pressing F1.

& Delphi Help =1 S |
Button ©
Filz Edit Bookmark Options Help
Propeties | Events | Press F1on aproperty of [Heptoes] Bk [Bt |
Actian -ll event name in the Object —3>TControl.Font
H Anchars [akLeft akTap] InSpeCtOr to d|5p|ay VCL TCartrol Sesalsa Example
BiDitode bdLeftT oRight - - "
H | Contrals the attributes of text written on or in the contral
Cancel False e p
(CxptiE Button property Font: TFont:
[Constraints [T SizeCanstraints] Description
Cursar cilefault To change to a new font, specify a new TFont object. To modify a font,
Default Falze change the value of the Charset, Color, Height, Name, Pitch, Size, or
DragCursar ciDrag Style of the TFont object.
Dragkind dkDrag
Draghiode dmianual
Enabled True
IEl Fort [TFonti ” =
Height 25
HelpContext |0 =l
All shown & Unitl_pas 8 [=] B
unin | -
unit Unitl: =
interface
uses
. Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,
In the Code editor, press Dialogs, Sedcrrls:
& Delphi Help [_[O]x]
Fiona |anguagev VCL! or type Fie Edt Bookmak Options Help
CLX element. S — Trorml = class TForm) HepIopics] Back | Frt |
[\ Euvvomi—+FBurton: |
: Tcheckbor; P TCheckBox
private Hierarchy Properties Methods Events Using
{ Private declarations | 1CheckBox Seedlso
public TCheckBox represents a check box that can be on (checked) or off
{ Public declarations ;| (Unchecked)
end;
Unit
StdCtrls

1

12: 6 |Modified Insert Co| Description

A TCheckBiax component presents an option for the user. The user can
check the box to select the option, or uncheck it 1o desslect the
aption

1-2 Quick Start

Printed

I Formt = £ Press F1ona
i component on a form
S i |
File Edt Bookmark Options Help
HepTopics] Back | Fint |
@] TButten
Higrarchy Properties Methods Events Using TButton
See also

Unit
StdCtrls

Description

TButton is a push button contral.

Use TButton to put a standard push button on a form. TButton
introduces several properties to control its behavior in a dialog box
setting. Users choose button controls to initiate actions

H

=

documentation

Pressing the Help button in any dialog box also displays context-sensitive online

documentation.

S Delphi 6 - Projectl

DR @[S~

2 Atach to Process.
==l =

i Parameters..
% Fegister Activex Server

M= E3

Eile Edit Search iew Project | Bun Component Database Tools Window Help H <Mone> =] | g;‘. %‘

F3 [Sustem | Data Access | Data Controks | dbExoress | DataSnao | BDE | artl®

= el = P R

¥ Urregister Activel! Server & Delphi Help M= B
Irstall COM+ Dbjects. Fie Edt Bookmark Options Help
Press F1on any - N | I | ‘
B = Run|Step Over
menu command, § Trace o /7 1 e e
i 'Bi Trace to Mext Souice Line Shilt+F7 L
dllalog bOX, qr e Fa4 Choose Run|Step Over to execute a program one line at a time, i‘
window to d|sp|ay = SN — - stepping over procedures while executing them as a single unit
. G Run Untl Betumn i+
He|p on that item. =) G B S The Step Cver command executes the program statement
highlighted by the execution point and advances the execution
I Program Pause point to the next statement
Frogram Fieset CulF2 = If you issue the Step Over command when the execution point
CW iz located on a function call, the debugger runs that function at
nspect... full speed, then positions the execution point on the statement
Evaluate/Moiy... CHl+F7 that follows the function call
*
o Add'watch... CukFs | = Ifyouissue Step Cwer when the execution point is positioned on
#dd Breakpoint 4 [the end statement of a routine, the routine returns from its call, -
i 1=l

Error messages from the compiler and linker appear in a special window below the
Code editor. To get Help with compilation errors, select a message from the list and

press F1.

Printed documentation

This Quick Start is an introduction to Delphi. To order additional printed
documentation, such as the Developer’s Guide, refer to shop.borland.com.

Introduction 1-3

Developer support services and Web site

Developer support services and Web site

Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support, refer to
http:/ /www.borland.com/devsupport/.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi, additional Delphi technical documents, and Frequently Asked
Questions (FAQs).

Typographic conventions

This manual uses the typefaces described below to indicate special text.

Table 1.1 Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Ttalicized words in text represent Delphi identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

1-4 Quick Start

A tour of the desktop

This chapter explains how to start Delphi and gives you a quick tour of the main
parts and tools of the desktop, or integrated desktop environment (IDE).

Starting Delphi

You can start Delphi in the following ways:

Double-click the Delphi icon (if you've created a shortcut).

Choose Programs | Borland Delphi 6 | Delphi 6 from the Windows Start menu.
Choose Run from the Windows Start menu, then enter Delphi32.
Double-click Delphi32.exe in the Delphi\Bin directory.

The IDE

When you first start Delphi, you'll see some of the major tools in the IDE. In Delphi,
the IDE includes the menus, toolbars, Component palette, Object Inspector, Object
TreeView, Code editor, Code Explorer, Project Manager, and many other tools. The
particular features and components available to you will depend on which edition of
Delphi you've purchased.

A tour of the desktop 2-1

The menus and toolbars

The Object TreeView displays a
hierarchical view of your components’ The menus and toolbars access a host of features

parent-child relationships. and tools to help you write an application.

i Delphi 6 - Projert1

File Edi Search |View Pioject Run Componert Database

Standard | Addi

T e | The Component palette
ols | dbEsoress | DataSnan | EDE | ADD | InterBase | S0AP | IntemetExoress | Intem <12 | Contains ready-made

| Win32| Sustem| Data dccess | Data

DE-B 0% 23] &

5D les |t OFFAMDm R e &0 [~ components to add to
EEIEE your projects.
33 Form! . .
~ crase trromm | Code editor displays
u EE— X .
$50 o oy 00de to view and edit
%E?;T,im
5 s
g:/\ndn:m
.) ——+—The Form Designer
] Aélglcm e contains a blank form
Bem (o on which to start
designing the user
interface for your
; IS IS application. An
application can include
St |50 S S several forms.
The Object Inspector is)
used to change objects’ The Code Explorer shows you the classes, variables, and
properties and select event routines in your unit and lets you navigate quickly.

handlers.

Delphi’s development model is based on two-way tools. This means that you can
move back and forth between visual design tools and text-based code editing. For
example, after using the Form Designer to arrange buttons and other elements in a
graphical interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by Delphi
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, and compile, test,
debug, and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 5, “Customizing the
desktop.”

The menus and toolbars

The main window, which occupies the top of the screen, contains the main menu,
toolbars, and Component palette.

Main window
Fie Edt Seach View Project Run Component Datsbase Tools Wwindow Help H <None> -] & d\;| in its default

e | @22 g“ & | || Standard | Aduitonal | Wing2 | Svstem | Data Acoess | Data Coniroks | dbsoress | DataSnan| BOE | D0 | IneBas=] S04P | Inten 1> arrangement.
H57(0) -l a5 |t OF 3 AR eir ¢ e E] g |

2-2 Quick Start

The Component Palette, Form Designer, and Object Inspector

Delphi’s toolbars provide quick access to frequently used operations and commands.
Most toolbar operations are duplicated in the drop-down menus.

Standard toolbar View toolbar Desktops toolbar
Remove
Open file from View Toggle Name of saved Save current
Nlew Save project project unit form/unit desktop layout desktop
| |
- . / | | " -
De-messs |50 b giae
| | | | |
17 » . ! |
Open Saveall Addfileto View New Set debug
project form form deskiop
Debug toolbar Internet toolbar
ug To_find out what a button dpes,
List of projects ~ Trace New WebSnap New WebSnap point to it for a moment until a
you can run into Application Data Module tooltip appears.

| | | You can use the right-click

. ty ey - - — menu to hide any toolbar. To
“ >~ a g ‘ 3 | | T display a toolbar if it's not
| | | \ showing, choose View|Toolbars
Run Pause Step New WebSnap External and check the one you want.
over Page Module Editor

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbars are also customizable. You can add commands you want to them or
move them to different locations. For more information, see “Arranging menus and
toolbars” on page 5-1 and “Saving desktop layouts” on page 5-4.

For more information...
If you need help on any menu option, point to it and press F1.

The Component Palette, Form Designer, and Object Inspector

The Component palette, Form Designer, Object Inspector, and Object TreeView work
together to help you build a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing visual
or nonvisual VCL and CLX components. The pages divide the components into

various functional groups. For example, the Standard, Additional, and Win32 pages
include windows controls such as an edit box and up/down button; the Dialogs page

A tour of the desktop 2-3

The Object TreeView

includes common dialog boxes to use for file operations such as opening and saving
files.

Click to view
more pages.

Standard IAdd\linnaII Win32| Sustaml DataAccessI Diata Enntrn\sl dhExnressI DataSnanI BDE | ADO I InterBaseI SDAPI IntemetExnressI Inlemell LI_’
h OF & AR Ewr o 88w 5L S \

Components

Component palette pages, grouped by function

Each component has specific attributes—properties, events, and methods—that
enable you to control your application.

After you place components on the form, or Form Designer, you can arrange
components the way they should look on your user interface. For the components
you place on the form, use the Object Inspector to set design-time properties, create
event handlers, and filter visible properties and events, making the connection
between your application’s visual appearance and the code that makes your
application run. See “Placing components on a form” on page 3-2.

After you place components on a form, the Object Inspector dynamically
changes the set of properties it displays, based on the component selected.

Button TEutton

Properties | Ewents |

Default False B

DragCursor crDrag

Dragkind dkDrag

Draghode | dmidanual

Enabled Tiue i

Font SRR
Charset DEFAULT_CHE ™ CheckBox2 : = .Buﬂum. E
Calor M clwindowTe =
Height 1 ™ CheckBox3 : i L
Hame MS Sans Serif
Pitch fpDefault
Size a

H5tyle |

Height 25

HelpContest 0 Panell

Hint

Left 128 =

All shown 7

For more information...
See “Component palette” in the online Help index.

The Object TreeView

The Object TreeView displays a component’s sibling and parent-child relationships
in a hierarchical, or tree diagram. The tree diagram is synchronized with the Object
Inspector and the Form Designer so that when you change focus in the Object
TreeView, both the Object Inspector and the form change focus.

You can use the Object TreeView to change related components’ relationships to each
other. For example, if you add a panel and check box component to your form, the

2-4 Quick Start

The Object Repository

two components are siblings. But in the Object TreeView, if you drag the check box
on top of the panel icon, the check box becomes the child of the panel.

If an object’s properties have not been completed, the Object TreeView displays a red
question mark next to it. You can also double-click any object in the tree diagram to
open the Code editor to a place where you can write an event handler.

If the Object TreeView isn’t displayed, choose View | Object TreeView.

The Object TreeView,
Object Inspector, and the

Form Designer work
together. When you click an
object on your form, it
automatically changes the
focus in both the Object
TreeView and the Object
Inspector and vice versa.

Press Alt-Shift-F11 to focus
on the Object TreeView.

The Object TreeView is especially useful for displaying the relationships between

database objects.

For more information...
See “Object TreeView” in the online Help index.

The Object Repository

| Action -
Alignment | iaRiightlustiy
AlowGiaped | False
[&nchars [akLeft.akTop] _|
BiDiMode | belLefiTaRight
Caplion CheckBaxl
Checked |Fake
Color clBinFace
Constraints |(TSizeCanstaint
olEl] Tiue
Cursor ciDefault |
Al shown 7

Obiject TreeView E1| M 5% Form1
s ¥
[T] Fom1
.E@Paneﬁ
{Z] CheckBoxl

Dbiect Inspector
CheckBaxl TCheckBox =

Properties |Evems|

}

i Crecfbon &
& H

Panelt

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,

sample applications, and other items that can simplify development. Choose File |

New | Other to display the New Items dialog box when you begin a project. The New

A tour of the desktop

2-5

The Code Editor

Items dialog box is the same as the Object Repository. Check the Repository to see if
it contains an object that resembles one you want to create.

The Repository’s tabbed pages include 3% Hew ltems
Ol:)leCtS like forms' frame§' unl.ts’ and Data Modules] Business I ‘wehSnap 1 SOAP I Corha 1
leards to Cl’eate speCIallzed |temS. Mew 1 Activex I e ultitier] Project! 1 Forms 1 Dialogs 1 Projects 1
N & =

When you're creating an item based on ™ Baich Fie [Componerl Console
one from the Object Repository, you #ppiiation Applicalion
can copy, inherit, or use the item: 7= = L

Py E % O
Copy (the default) creates a copy of Contiol Pansl Conbiol Panel DslaMorkds DLLwizad Form
the item in your project. Inherit means Application Mode
changes to the object in the Repository — - =
are inherited by the one in your project. % i\% @
Use means Changes to the Ob]eCt in Frame Package Project Group Hes\?}‘::;dDLL Service j
your project are inherited by the object = = =

in the Repository.

(1] | Cancel ‘ Help |

To edit or remove objects from the Object Repository, either choose Tools | Repository
or right-click in the New Items dialog box and choose Properties.

Object Repositary [x]
DObjects:
You can add, remove, or S abort bor
rename tabbed pages from T %gabtl:?di pas
the Object Repository. S | ELTT
= E] QuickRAeport Master/Detail
[% 102 st Rename Page. 5 uickReport Labels
EditDbject...
Click the arrows to change Dtz Otice!
the order in which a tabbed
page appears inthe New —> 1| I Heifm) I i o

Items dialog box.

OK. I Cancel | Help |

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 5-10.

For more information...

See “Object Repository” in the online Help index. The objects available to you will
depend on which edition of Delphi you purchased.

The Code Editor

As you design the user interface for your application, Delphi generates the
underlying Object Pascal code. When you select and modify the properties of forms
and objects, your changes are automatically reflected in the source files. You can add

2-6 Quick Start

The Code Editor

code to your source files directly using the built-in Code editor, which is a full-

featured ASCII editor.
Components added
Uritl | -5 .| totheformare
= mit Unitis ;I reflected in the code.
interface

uses

Dialogs:

Generated

code. type

TForml = class (TForm)
Buttonl: TButton;

private
public

end;

R

Windows, Messages, SysUcils, Va

FopupMenul: TPopuplenu:

{ Private declarations }

{ Public declarations }

¥ Form1

[_[O1x]

= Buttoril E

ot

T 1 Modfied et

|\Eode‘i

Delphi provides various aids to help you write code, including the Code Insight
tools, class completion, and code browsing.

Code Insight

The Code Insight tools display context-sensitive pop-up windows.

Table 2.1
Tool

Code Insight tools

Code completion

Code parameters
Tooltip expression evaluation
Tooltip symbol insight

Code templates

How it works

Type a class name followed by a dot (.) to display a list of
properties, methods, and events appropriate to the class, select
it, and press Enter. In the interface section of your code you can
select more than one item. Type the beginning of an assignment
statement and press Ctri+space to display a list of valid values for
the variable. Type a procedure, function, or method name to
bring up a list of arguments.

Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

While your program has paused during debugging, point to any
variable to display its current value.

While editing code, point to any identifier to display its
declaration.
Press Ctrl+J to see a list of common programming statements that

you can insert into your code. You can create your own
templates in addition to the ones supplied with Delphi.

A tour of the desktop 2-7

The Code Editor

With code completion, when you type the dot
| e in Buttonl . Delphi displays a list of
= (1 verisbles/Const| procedure TForml.ButtonlClick (Sender: Tofsl properties, methods, and events for the class.
o 35:""1 b;g;'t‘on . As you type, the list automatically filters to the
5 Classes end; [ComiOE CrRE SCairar e O selection that pertains to that class. Select an
& Contrals e T ligment: und item on the list and press Enterto add it to
g E:::fs end. pmpenn; Q“iﬁ" -TETa:H : your code.
prope: nchors " Sort by Name N
g ﬁi‘ﬁ;s bioperty _ BibiMode T SHHHEE N, 5 Procedures and properties are colored as teal
3 sacs and functions as blue.

3 5 I]| L . .
L | : # = -|> You can sort this list alphabetically by right-
type =l clicking and clicking Sort by Name.

. oot Pt
POPUBNENT e GHCiis TButton: lasslT ButonControl - StdCts. pas (671)]
e _J[= The tooltip symbol insight displays declaration
ol Fubre dectazations } information for any identifier when you pass
the mouse over it.
va}r'urml: TForml;
. of
1212 [Modiied [Insert [\Code/ 2

To turn these tools on or off, choose Tools | Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

Class Completion

Class completion generates skeleton code for classes. Place the cursor anywhere
within a class declaration of the interface section of a unit and press Ctri+Shift+C or
right-click and choose Complete Class at Cursor. Delphi automatically adds private
read and write specifiers to the declarations for any properties that require them,
then creates skeleton code for all the class’s methods. You can also use class
completion to fill in class declarations for methods you’'ve already implemented.

To turn on class completion, choose Tools | Environment Options, click the Explorer
tab, and make sure Finish incomplete properties is checked.

For more information...
See “Code Insight” and “class completion” in the online Help index.

Code Browsing

While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called Tooltip Symbol Insight displays where the
identifier is declared. Press Ctrland the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

The Code editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code editor keeps track of where you've been in

2-8 Quick Start

The Code Editor

the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

B mdiframe pas [_ O[]
WoIFrane | @ -

4l Press Ctrland click or right-click and click Find

Declaration to jump to the definition of the identifier.

J The Code editor maintains a list of the definitions you
jumped to.

{ Private declarations }
public

{ Public declarations)
end;

<— Click the back arrow to
return to the last place
you were working in
your code. Then click
the forward arrow to
move forward again.

“«

21024 Modfied Insert \Code {Diagiam

EER [Inser

You can also move between the declaration of a procedure and its implementation by
pressing Ctri+Shift+T or Ctrl+Shift+l..

To customize your code editing environment, see “Customizing the Code Editor” on
page 5-12.

For more information...
See “Code editor” in the online Help index.

The Diagram page

The bottom of the Code editor may contain one or more tabs, depending on which
edition of Delphi you have. The Code page, where you write all your code, appears
in the foreground by default. The Diagram page displays icons and connecting lines
representing the relationships between the components you place on a form or data
module. These relationships include siblings, parent to children, or components to
properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag
one or multiple icons to the Diagram page to arrange them vertically. To arrange
them horizontally, press Shift while dragging. When you drag icons with parent-
children or component-property dependencies onto the page, the lines, or connectors,
that display the dependent relationships are automatically added. For example, if
you add a dataset component to a data module and drag the dataset icon plus its
property icons to the Diagram page, the property connector automatically connects
the property icons to the dataset icon.

For components that don’t have dependent relationships but where you want to
show one, use the toolbar buttons at the top of the Diagram page to add one of four

A tour of the desktop 2-9

The Code Editor

connector types, including allude, property, master/detail, and lookup. You can also
add comment blocks that connect to each other or to a relevant icon.

From the Object TreeView, drag
the icons of the components to
the Diagram page.

To view other diagrams you've named in the
current project, click the drop-down list box.

Type a name and description for your
diagram.

Use the Diagram page
toolbar buttons—Property,
Master/Detail and Lookup—
to designate the relationship
between components and
components and their
properties. The appearance
of the connecting line varies
e for each type of relationship.

/P Click the Comment block
7 button to add a comment,

e and the Allude connector
oo (& s | button to draw a connection

to another comment or icon.
< o

11 [Modfied [Insert [\Code)Dizgram/ /

Vou can sef the DataSource

You can type a name and description for your diagram, save the diagram, and print it
when you are finished.

For more information...
See “diagram page” in the online Help index.

Viewing form code

Forms are a very visible part of most Delphi projects—they are where you design the
user interface of an application. Normally, you design forms using Delphi’s visual
tools, and Delphi stores the forms in form files. Form files (.dfm, or .xfm for a CLX
application) describe each component in your form, including the values of all
persistent properties. To view and edit a form file in the Code editor, right-click the
form and select View as Text. To return to the graphic view of your form, right-click
and choose View as Form.

2-10 Quick Start

The Code Explorer

5 Forml -]
D clphiB\Bin\Unit1dfm = 3

-
N RS S object Formi: TFormi =
Left = 211
= Buiten] E Top = 132
Width = 783 H
BERCH Hesons = 540 Use View As
Caption = 'Formi! Text to view a
E' Color = clBrnFace .
Font.Charset = DEFAULT GHARSET text deSC”p“On
- f
Edit v Font.Color 7ClW1ndDWTEXE Of the form S
Font.Height = -11 " A
Cortic] D Font.Name = 'HS Sans Serif’ attributes in the
; Font.Suyle = [] \
Podion 1| oracreaceorasr = raiss Code editor.
Flip Children s PixelsPerInch = 96
i) Tab Oider TextHeight = 13
21 1B Creafion Order object Buttonl: TButton
Aevertia|rerited Lefe = 236
Top = 144
Add b Repository.. i _,;I
View s Text >
[v TesDFM 1o 1 [Modfied [Insert [\Code/ v

You can save form files in either text (the default) or binary format. Choose Tools |
Environment Options, click the Designer page, and check or uncheck the New forms
as text check box to designate which format to use for newly created forms.

For more information...
See “form files” in the online Help index.

The Code Explorer

When you open Delphi, the Code Explorer is docked to the left of the Code editor
window, depending on whether the Code Explorer is available in the edition of
Delphi you have. The Code Explorer displays the table of contents as a tree diagram
for the source code open in the Code editor, listing the types, classes, properties,
methods, global variables, and routines defined in your unit. It also shows the other
units listed in the uses clause.

You can use the Code Explorer to navigate in the Code editor. For example, if you
double-click a method in the Code Explorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code editor.

A tour of the desktop 2-11

The Project Manager

—————— DiFiane | -

[Classes

w4 TFrameForm procedure TFrameForm.TilelClick(Sender: TObject); =

=0 Published egin)])
© Buengeizons S0 Double-click an item in the Code
& morgecrelf S e Explorer and the cursor moves to
?5 CascadelCe procedure TFrameForm.cCascadelClick(Sender: Tobjeet): that item’s implementation in the
Exitl i . .
o oo T Code editor. Press Ctrl+Shift+E to
o e[| move the cursor back and forth
g gT 1 procedure TFrameForm.ArrangeiconsiClick (3ender: TObject); bEIween the |aSt place you Were in
o Nowiciek || ewin the Code Explorer and Code editor.
Operi hrrangelcons; . X
e | e Each item in the Code Explorer has
& oA racedure TrrameForm. GpenicLick(Senders Tohieet) an icon that designates its type.
o Tile1 Clich begi

% ;[/Jmifnlw: eg;nOpEnFllEDlang.ExE:utE then

[] Variables/Constants with TEditForm.Create (Self] do

@9 FrameForm Openi(OpenFilebialog. FileNawe) _,j
[Uses ‘ r
<] I |Insert \CodeDiagram / 4

To configure how the Code Explorer displays its contents, choose Tools |
Environment Options and click the Explorer tab. See “Customizing the Code
Explorer” on page 5-12.

For more information...
See “Code Explorer” in the online Help index.

The Project Manager

When you first start Delphi, it automatically opens a new project, as shown on

page 2-2. A project includes several files that make up the application or DLL you are
going to develop. You can view and organize these files—such as form, unit,
resource, object, and library files—in a project management tool called the Project
Manager. To display the Project Manager, choose View | Project Manager.

Project Manager =]
docker. ~ 2] x
ocKeR e ‘ New Femove Achvate

Files | Path

ojoct £:\Frogiam Files\Barland\DielphiGhin
C:\Frogiam Files'Barland\DelphiG\Demes\Docking
ConjoinHast C:\Frogiam Files'Barland\Delphi\Demes\Docking

DockFom C:4Program Files\Borand\Delphig\Demos\Docking
Main C:4Program Files\Borand\Delphig\Demos\Docking
TabHost C:4Program Files\Borand\Delphig\Demos\Docking

[Z] TabHostpas C:\Program Files\Borland\Dielphig\Demos\Docking
= TabDockHost C:\Program Files\Borland' DelphiS\Demost\Docking

You can use the Project Manager to combine and display information on related
projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 5-9.

For more information...
See “Project Manager” in the online Help index.

2-12 Quick Start

The Project Browser

The Project Browser

The Project Browser examines a project in detail. The Browser displays classes, units,
and global symbols (types, properties, methods, variables, and routines) your project
declares or uses in a tree diagram. Choose View | Browser to display the Project
Browser.

Globels | [Classes | Units | The Project Browser has two
EE¥ 06 =] 3 TObjsct resizeable panes: the

£} TPersistent Scape | nheritance | References | Inspector pane (on the left)
=% TCompanent and the Details pane. The

-3 TContol = = Inspector pane has three tabs
= ¥4 TwinContro o SllerGanstuction for globals, classes, and units
=% TSerallingWWinContral s BeforeDestruction) ’ ’ '
=¥} TCustamFarm & Classinfo Globals displays classes,
=3 TFarm "':J gﬁssmﬁ’”el types, properties, methods,
¥4 TFom o lnashlamels variables, and routines.
- ClagsParent
& Class Type Classes displays classes in a
& Cleanuplnstance B hierarchical diagram.
-4 Creste . . o »
g DefauliHandler Units displays units, identifiers
Destroy declared in each unit, and the
-4 Dispatch other units that use and are

- FieldAddress

used by each unit.
du Free =l

By default, the Project Browser displays the symbols from units in the current project
only. You can change the scope to display all symbols available in Delphi. Choose
Tools | Environment Options, and on the Explorer page, check All symbols (VCL
included).

For more information...
See “Project Browser” in the online Help index.

To-do lists

To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items

A tour of the desktop 2-13

To-do lists

directly in the source code. Choose View | To-Do List to add or view information
associated with a project.

Action ltem | ¥ | Modus = | Owner | Categoy
O @ Add Action Manager dialog box 1 Joeng u
] Add buttans ta library 2 Joerg u
FEE 2
= o Right-click on a to-do list to
T+, .
Edt F2 <1 display commands that let you
Delate Del

sort and filter the list.

I -

Filter » Staws
A v Show Completed ltems Type
[afitems [0 hidden) |2 ¥ Show ToolTips when Clipped Priarity

. -
CI|Ck the CheCk Table Properties..

Categery

box when you're
done with an item.

v Dockable

For more information...
See “to-do lists” in the online Help index.

2-14 Quick Start

Programming with Delphi

The following sections provide an overview of software development with Delphi,
including creating a project, working with forms, writing code, and compiling,
debugging, deploying, and internationalizing applications, and including the types
of projects you can develop.

Creating a project

A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start Delphi, a new project
opens. It automatically generates a project file (Projectl.dpr), unit file (Unitl.pas),
and resource file (Unitl.dfm; Unitl.xfm for CLX applications), among others.

If a project is already open but you want to open a new one, choose either File | New |
Application or File | New | Other and double-click the Application icon. File | New |
Other opens the Object Repository, which provides additional forms, modules, and
frames as well as predesigned templates such as dialog boxes to add to your project.
To learn more about the Object Repository, see “The Object Repository” on page 2-5.

When you start a project, you have to know what you want to develop, such as an
application or DLL. To read about what types of projects you can develop with
Delphi, see “Types of projects” on page 3-8.

For more information...
See “projects” in the online Help index.

Programming with Delphi 3-1

Building the user interface

Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File | New | Data Module. Delphi opens an empty
data module, which displays an additional unit file for the module in the Code
Editor, and adds the module to the current project as a new unit. Add nonvisual
components to a data module in the same way as you would to a form.

¥ DataModule2 [_ O] x|

e Double-click a nonvisual
| :‘#‘;I component on the Component
) —1 palette to place the component in
ClientD ataSet1 DataSourcel the data module.

When you reopen an existing data module, Delphi displays its components.

For more information...
See “data modules” in the online Help index.

Building the user interface

With Delphi, you first create a user interface (UI) by selecting components from the
Component palette and placing them on the main form.

Placing components on a form

To place components on a form, either:

1 Double-click the component; or
2 Click the component once and then click the form where you want the component

to appear.
i Delphi 6 - Project] 9 (=]
Fle Edi Seach View Projct Run Component Database Tools Window Help H <None> o | ﬂ,|

OE-| | & = | = g“ & || Standard | Addtional | wina2 | Sustem | Datdceess | Data Controls | dbEsoress | DataSnan | BDE | AD0 | InterBase | S0P | intem >
wile w1 L= | Alﬁﬁ @ Elees T2 &

T

Click a component on the Component palette.

3-2 Quick Start

Building the user interface

Select the component and drag it to wherever you want on the form.

Then click where you want to place it on the form. —

55 Project Manager ChilsAlb+F11

Transtation Manager Or choose a
S Object lspsctor P11 component from
?:\;:Dt EI:E\flew Shift+Alt+F11 an alphabetical
= list.

EE] Alignment Palette
F Browser Shift+Ctil+B

2 Window List.
Debug Windows
Desktops

Search by name:

T3 Toaale Form/Unit
[0 Units..
S Forme

. Tise Libran:
Mew Edit windaw

Toolbars

iE &8 B

m TécoessRelerences [LI
A b Farm

For more information...
See “Component palette” in the online Help index.

Setting component properties

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears
and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

Button TEutton 2
Properties | Eventsl
Default False
DragCursor | cDrag
DragKind dkDrag
Dragtode dmbtd anual
Enabled Tiie {
Font
Charset DEFAULT_OME
Calor M clvindowTe
Height -1
Hame S Sans Ser
Pitch fpDefault
Size a "
Style]
Height 25
HelpContext |0
Hint
Left 128 =
Il shawn A

You can also click a plus sign to open a detail list.

Or use this drop-down list to
select an object. Here,
Button1 is selected, and its
properties are displayed.

You can select a
component, or object, on
the form by clicking on it.

Select a property and
change its value in the
right column. e
Click an ellipsis to open B -—“‘l‘—f
a dialog box where you

can change the Sesmssicniinioi By
properties of a helper R HTE P
object.

Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex

Programming with Delphi 3-3

Building the user interface

values. When you click on such a property value, you'll see an ellipsis. For some
properties, such as size, enter a value.

Puosition

Double-click here to

poDesigned
FrintScale poPropaortional Change the value from Font EHE
Scaled Trueto False. Eont: Font styls Siee:
ShowHint Falze [Reguiar 2 lLI
Tan n
Cancel
. . 10
Laption Panell Click any ellipsis to NewCertuySchibk: 12 o |
Calo olTea glds.woi fr:gtr)errtoy o B Ooepet, e LS "
L Palat 24 H
property. .y Bt ° a4
J/ Effects Sample
Enabled I U I Strkeout
[+Fant (TFaht] =] I Underline Adbbize
FullRenaint True =l Laolor:
[E =k =] | Serpt
. . Westemn -
Click on the down arrow to select from a list
of valid values.

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

The Object Inspector also supports expanded inline component references. This
provides access to the properties and events of a referenced component without
having to select the referenced component itself. For example, if you add a button
and pop-up menu component to your form, when you select the button component,
in the Object Inspector you can set the PopupMenu property to PopupMenul, which
displays all of the pop-up menu’s properties.

B Fomi
Set the Button Eu1 = TEuItun 7|
component's Propeties | Events | Jiapicaanianias
PopupMenu property Fpauemsmwm :w -
to PopuplMenul, and Popghens Papipheml =] € il |
lignment | paRight 8 : A .
all of the popup AuluHutkeyz]maAutumah: \L
) 1 AutoLinef ad
menu’s properties Pl oo n

appear when you
click the plus sign (+).

Inline component
references are
colored red, and their
subproperties are
colored green.

BiliMode
HelpContext
Images

bdLeftT oRight
o

Items.

Menudnimati
Mame
OwnerDraw
FarentBiDit
Tag

[Menu)
]
Popuptenul
False
True
o

TrackButton
ShowHint

tbRightEution

&l shown

False hd

SN

=] B3

For more information...
See “Object Inspector” in the online Help index.

3-4 Quick Start

Writing code

Writing code

An integral part of any application is the code behind each component. While
Delphi’s RAD environment provides most of the building blocks for you, such as
preinstalled visual and nonvisual components, you will usually need to write event
handlers, methods, and perhaps some of your own classes. To help you with this
task, you can choose from thousands of objects in Delphi’s VCL and CLX class
libraries. To work with your source code, see “The Code Editor” on page 2-6.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

Here, Button1 is selected and its type is displayed: TButton.
[Bunant uen <—=t— Click the Events tab in the Object Inspector to see the
Propetties Events | events that the Button component can handle.
Action
TR ..o Cick__ R
OnContextPopt Uil | FEIBEE
g:g::ggi‘g |—SG|eCt an eX|St|ng eVem procedure TForml.ButtonlClick(Sender: TChject); ;l
OnEreD ok handler from the drop- pean
OnEndDrag down list. end:
OnEnter . .
st r double-click in the
Or double-click in th end.
Do value column, and Delphi
Bt generates skeleton code
OnMouseDion for the new event
OntouseMaove
R handler.
OnStartDock.
OnStartDrag . _»ILI
P il KIS
|A|| S:::i‘ AL 7 a1 ‘Mudilied Insert |\Code,(D|aglam,/ 4
For more information...

See “events” in the online Help index.

Using the VCL and CLX libraries

Delphi comes with two class libraries made up of objects, some of which are also
components or controls, that you use when writing code. You can use the Visual
Component Library (VCL) for Windows applications and Borland Component
Library for Cross Platform (CLX) for Linux applications. These libraries include
objects that are visible at runtime—such as edit controls, buttons, and other user
interface elements—as well as nonvisual controls like datasets and timers. The

Programming with Delphi 3-5

Compiling and debugging projects

following diagram below shows some of the principal classes that make up the VCL

The CLX hierarchy is similar.

TObject
| | I | |
Exception ~ TStream TPersistent TComObject Tinterface
| | I | |
TGraphicsObject TGraphic TComponent TCollection TStrings
| | | | | |
TApplication TDataSet TMenu TControl TCommonDialog TField
| | | Most visual controls inherit
TGraphicControl TWinControl from TWinControl or in

TScrollingWinControl

CLX, TWidgetControl.
! |

TCustomControl

TCustomForm

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to Delphi forms and data modules.
Because VCL and CLX components are hooked into the IDE, you can use tools like
the Form Designer to develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a VCL or CLX button
control, you don’t have to write code to handle generated events when the button is
clicked; you are responsible only for the application logic that executes in response to

the click itself.

Most editions of Delphi come with VCL and CLX source code and examples of Object

Pascal programming techniques.

For more information...

See “Visual Component Library Reference” and “CLX Reference” in the Help
contents and “VCL” in the online Help index. See http://www.borland.com/delphi
for open source and licensing options on CLX.

Compiling and debugging projects

After you have written your code, you will need to compile and debug your project.
With Delphi, you can either compile your project first and then separately debug it,
or you can compile and debug in one step using the integrated debugger. To compile
your program with debug information, choose Project | Options, click the Compiler
page, and make sure Debug information is checked.

Delphi uses an integrated debugger so that you can control program execution,
watch variables, and modify data values. You can step through your code line by
line, examining the state of the program at each breakpoint. To use the integrated

3-6 Quick Start

Compiling and debugging projects

debugger, choose Tools | Debugger Options, click the General page, and make sure
Integrated debugging is checked.

You can begin a debugging session in the IDE by clicking the Run button on the
Debug toolbar, choosing Run | Run, or pressing F9.

Bun

»

<2 Attach to Process. ..

B3 Parameters. .
Choose any of the debugging —
commands from the Run [-ns s

: menu. Some commands are

O Gitep Dver Fa .

R ol & also available on the toolbar. Run button

'Bi Trace to Next Source Line Shilt+F7

"I Aun to Cursor F4

Evaluate/Modify.. CHI+F7

e Addd Wiztch... CHl+F5
Add Breskpoint v

With the integrated debugger, many debugging windows are available, including
Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and
Event Log. Display them by choosing View | Debug Windows. Not all debugger
views are available in all editions of Delphi.

Thread Status, Breakpoint List, Call 5 Watch List, Modules, Event Log
Thread Status Ereakpoint List |Ca|l Etackl Wyatch Llstl Mudu\esl Event Lugl

You can combine several

Filename/Address | Line/Length ‘ Condition | Action | Fass Count ‘ Group A h

B CheckBoximp/l... 4 Braak. 0 debugging windows for
EfCheckBoximpll... 20 i easier use.

B CheckBoximpll... 24 Break 0

B Frojectl.dpr 13 Break 1}

1] |

To learn how to combine debugging windows for more convenient use, see “Docking
tool windows” on page 5-2.

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Saving desktop layouts” on
page 5-4.

For more information...
See “debugging” and “integrated debugger” in the online Help index.

Programming with Delphi 3-7

Deploying applications

Deploying applications

You can make your application available for others to install and run by deploying it.
When you deploy an application, you will need all the required and supporting files,
such as the executables, DLLs, package files, and helper applications. Delphi comes
bundled with a setup toolkit called InstallShield Express that helps you create an
installation program with these files. To install InstallShield Express, from the Delphi
setup screen, choose InstallShield Express Custom Edition for Delphi.

For more information...
See “deploying, applications” in the online Help index.

Internationalizing applications

Delphi offers several features for internationalizing and localizing applications. The
IDE and the VCL support input method editors (IMEs) and extended character sets to
internationalize your project. Delphi includes a translation suite, not available in all
editions of Delphi, for software localization and simultaneous development for
different locales. With the translation suite, you can manage multiple localized
versions of an application as part of a single project.

The translation suite includes three integrated tools:

* Resource DLL wizard, a DLL wizard that generates and manage resource DLLs.
¢ Translation Manager, a table for viewing and editing translated resources.
¢ Translation Repository, a shared database to store translations.

To open the Resource DLL wizard, choose File | New | Other and double-click the
Resource DLL Wizard icon. To configure the translation tools, choose Tools |
Translation Tools Options.

For more information...
See “international applications” in the online Help index.

Types of projects

All editions of Delphi support general-purpose 32-bit Windows programming, DLLs,
packages, custom components, multithreading, COM (Component Object Model)
and automation controllers, and multiprocess debugging. Some editions support
server applications such as Web server applications, database applications, COM
servers, multi-tiered applications, CORBA, and decision-support systems.

For more information...

To see what tools your edition supports, refer to the feature list on
www .borland.com/delphi.

3-8 Quick Start

Types of projects

CLX applications

With Delphi, you can develop a cross-platform application that can be ported to Kylix,
where you compile, debug, and deploy your project to run on Linux. To develop a CLX
application, choose File | New | CLX Application. The IDE is similar to that of a regular
Delphi application, except that only the components and items you can use in a CLX
application appear on the Component palette and in the Object Repository.
Windows-specific features supported on Delphi will not port directly to Linux
environments.

For more information...

To see which components are available for developing cross-platform applications,
see “CLX Reference” in the online Help contents.

Web server applications

A Web server application works with a Web server by processing a client’s request
and returning an HTTP message in the form of a Web page. To publish data for the
Web, Delphi includes two different technologies, depending on what edition of
Delphi you have.

To develop a basic Web server application, you create a Web module to dispatch
requests, define actions, create HTML pages, and write event handlers for both
Windows and Linux applications. To create a WebBroker Web server application,
choose File | New | Other and double-click the Web Server Application icon. You can
add components to your Web module from the Internet and InternetExpress
Component palette pages.

WebSnap adds to this functionality with adapters, additional dispatchers, additional
page producers, session support, and Web page modules. To create a new WebSnap
server application, select File | New | Other, click the WebSnap page, and double-click
the Web Server Application icon. You can add WebSnap components from the
WebSnap Component palette page.

j| New WebSnap Application

T Server Type

|2 | @ e

(=3
LT

You can also access the
WebSnap Application data
module by choosing View!
Toolbarslinternet, and
clicking the New WebSnap
Application icon.

= §SAPI/NSAPT Dynaic Link Librar?
" LGl Stand-alone executable

© WinCGl Stand-alone executable
¢ fpache Shared Moduls (DLL)

" WwWeb App Debugger executable

(B s W ame: |

-~ Application Module Typs———————————————————
& Page Module \5 |
¢ Data Module Services

— Application Madule Dptians

Page Name: [PagsProducerPage

Page Options
Caching: Cache Instance 'I

™ Default o |

Cancel | e |

You can create an
application to run on
various Web server
application types,
including a test server to
help you debug your Web
server application.

Choose whether you
want a data module or a
page module, which
displays your HTML page
as you work.

Programming with Delphi

Types of projects

For more information...
See “Web applications” in the online Help index.

Database applications

Delphi offers a variety of database and connectivity tools to simplify the
development of database applications.

To create a database application, first design your interface on a form using the Data
Controls page components. Second, add a data source to a data module using the
Data Access page. Third, to connect to various database servers, add a dataset and
data connection component to the data module from the previous or corresponding
pages of the following connectivity tools:

¢ dbExpress is a collection of database drivers for cross-platform applications that
provide fast access to SQL database servers, including DB2, InterBase, MySQL,
and Oracle. With a dbExpress driver, you can access databases using
unidirectional datasets.

* The Borland Database Engine (BDE) is a collection of drivers that support many
popular database formats, including dBASE, Paradox, FoxPro, Microsoft Access,
and any ODBC data source. SQL Links drivers, available with some versions of
Delphi, support servers such as Oracle, Sybase, Informix, DB2, SQL Server, and
InterBase.

¢ ActiveX Data Objects (ADO) is Microsoft's high-level interface to any data source,
including relational and nonrelational databases, e-mail and file systems, text and
graphics, and custom business objects.

¢ InterBase Express (IBX) components are based on the custom data access Delphi
component architectures. IBX applications provide access to advanced InterBase
features and offer the highest performance component interface for InterBase 5.5
and later. IBX is compatible with Delphi’s library of data-aware components.

Certain database connectivity tools are not available in all editions of Delphi.

For more information...
See “database applications” in the online Help index.

BDE Administrator

Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the
aliases used by data-aware VCL controls to connect to databases.

For more information...

From the Windows Start menu, choose Programs | Borland Delphi 6 | BDE
Administrator. Then choose Help | Contents.

3-10 Quick Start

Types of projects

SQL Explorer (Database Explorer)

The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it
to create database aliases, view schema information, execute SQL queries, and
maintain data dictionaries and attribute sets.

For more information...
From the Delphi main menu, choose Database | Explore. Then choose Help |
Contents. Or see “Database Explorer” in the online Help index.

Database Desktop

The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and
dBase database tables in a variety of formats.

For more information...

From the Windows Start menu, choose Programs | Borland Delphi 6 | Database
Desktop. Then choose Help | User’s Guide Contents.

Data Dictionary

When you use the BDE, the Data Dictionary provides a customizable storage area,
independent of your applications, where you can create extended field attribute sets
that describe the content and appearance of data. The Data Dictionary can reside on a
remote server to share additional information.

For more information...
Choose Help | Delphi Tools to see “Data Dictionary.”

Custom components

The components that come with Delphi are preinstalled on the Component palette
and offer a range of functionality that should be sufficient for most of your
development needs. You could program with Delphi for years without installing a
new component, but you may sometimes want to solve special problems or display
particular kinds of behavior that require custom components. Custom components
promote code reuse and consistency across applications.

You can either install custom components from third-party vendors or create your
own. To create a new component, choose Component | New Component to display
the New Component wizard. To install components provided by a third party, see
“Installing component packages” on page 5-7.

For more information...

See Part V, “Creating custom components,” in the Developer’s Guide and
“components, creating” in the online Help index.

Programming with Delphi 3-11

Types of projects

DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be
called by applications and by other DLLs. A DLL contains code or resources typically
used by more than one application. Choose File | New | Other and double-click the
DLL Wizard icon to create a template for a DLL.

For more information...
See “DLLs” in the online Help index.

COM and ActiveX

Delphi supports Microsoft’'s COM standard and provides wizards for creating
ActiveX controls. Choose File | New | Other and click the ActiveX tab to access the
wizards. Sample ActiveX controls are installed on the ActiveX page of the
Component palette. Numerous COM server components are provided on the Servers
tab of the Component palette. You can use these components as if they were VCL
components. For example, you can place one of the Microsoft Word components onto
a form to bring up an instance of Microsoft Word within an application interface.

For more information...
See “COM” and “ActiveX” in the online Help index.

Type libraries

Type libraries are files that include information about data types, interfaces, member
functions, and object classes exposed by an ActiveX control or server. By including a
type library with your COM application or ActiveX library, you make information
about these entities available to other applications and programming tools. Delphi
provides a Type Library editor for creating and maintaining type libraries.

For more information...
See “type libraries” in the online Help index.

3-12 Quick Start

Creating a text editor—a tutorial

This tutorial takes you through the creation of a text editor complete with menus, a
toolbar, and a status bar.

Note This tutorial is for all editions of Delphi and is for the Windows platform only.

Starting a new application

Before beginning a new application, create a directory to hold the source files:

1

2

Create a directory called TextEditor in your C:\Program Files\ Borland\ Delphi6\
Projects directory.

Open a new project.

Each application is represented by a project. When you start Delphi, it creates a
blank project by default. If another project is already open, choose File | New |
Application to create a new project.

When you open a new project, Delphi automatically creates the following files:

* Project1.dpr: a source-code file associated with the project. This is called a project
file.

* Unitl.pas: a source-code file associated with the main project form. This is called
a unit file.

e Unitl.dfm: a resource file that stores information about the main project form.
This is called a form file.

Each form has its own unit (Unit1.pas) and form (Unitl.dfm) files. If you create a
second form, a second unit (Unit2.pas) and form (Unit2.dfm) file are automatically
created.

Creating a text editor—a tutorial 4-1

Setting property values

3 Choose File | Save All to save your files to disk. When the Save dialog box appears:
* Navigate to your TextEditor folder.
® Save Unitl using the default name Unit1.pas.

¢ Save the project using the name TextEditor.dpr. (The executable will be named
the same as the project name with an .exe extension.)

Later, you can resave your work by choosing File | Save AllL

When you save your project, Delphi creates additional files in your project
directory. These files include TextEditor.dof, which is the Delphi Options file,
TextEditor.cfg, which is the configuration file, and TextEditor.res, which is the
Windows resource file. You don’t need to worry about these files but don’t delete
them.

Setting property values

When you open a new project, Delphi displays the project’s main form, named Form1
by default. You'll create the user interface and other parts of your application by
placing components on this form.

Next to the form, you'll see the Object Inspector, which you can use to set property
values for the form and the components you place on it. When you set properties,
Delphi maintains your source code for you. The values you set in the Object
Inspector are called design-time settings.

1 Find the form’s Caption property in the Object Inspector and type Text Editor
Tutorial replacing the default caption Forml. Notice that the caption in the heading
of the form changes as you type.

Objsct Inspector

Fom1 TForm1 g—

Propeties | Everns | shows the currently selected component. In this case,

The drop-down list at the top of the Object Inspector

funGize |Fake [l the component is Form1 and its type is TForm1.
BiDiMode bdLeftT oRight

EHEorderlcons [hiSystemMenu,hilJ
BorderStvle bsSizeable
Borderwidth |0

Caption

TR When a component is selected, the Object Inspector
Clientwicth |13 displays its properties.
Colar [1clBinFace
[H Constraints [TSizeConstraints)
CH3D True =
&l shown A

4-2 Quick Start

Adding components to the form

2 Run the form now by pressing F9, even though there are no components on it.

5 Text Editor Tutorial

Without any components on it,
the runtime view of the form
looks similar to the design-time
view, complete with the
Minimize, Maximize, and Close
buttons.

3 To return to the design-time view of Form1, do one of the following:

e Click the X in the upper right corner of the title bar of your application
(the runtime view of the form);

¢ (Click the Exit application button in the upper left corner of the title bar and click
Close;

e Choose View | Forms, select Form1, and click OK; or

* Choose Run | Program Reset.

Adding components to the form

Before you start adding components to the form, you need to think about the best
way to create the user interface (UI) for your application. The Ul is what allows the
user of your application to interact with it and should be designed for ease of use.

Delphi includes many components that represent parts of an application. For
example, there are components (derived from objects) on the Component palette that
make it easy to program menus, toolbars, dialog boxes, and many other visual and
nonvisual program elements.

The text editor application requires an editing area, a status bar for displaying
information such as the name of the file being edited, menus, and perhaps a toolbar
with buttons for easy access to commands. The beauty of designing the interface
using Delphi is that you can experiment with different components and see the
results right away. This way, you can quickly prototype an application interface.

To start designing the text editor, add a RichEdit and a StatusBar component to the
form:

1 To create a text area, first add a RichEdit component. To find the RichEdit
component, on the Win32 page of the Component palette, point to an icon on the

Creating a text editor—a tutorial 4-3

Adding components to the form

4-4

palette for a moment; Delphi displays a Help tooltip showing the name of the
component.

5T Delphi 6 - Project]

[_[O]x]
File Edit Seach View Pioject Fun Component Database Todls Window Help -l | &
0= - o 2s & Stardard | Additional 32 | Sustem | DataAccess | Data Controls | dbEsorsss | DataSnao | BOE | ADO | InterBiase | IntsmetExpress 41 *
- Sy S - = E = e, 22 ==
FESHD| > - s w2l E s = e B e =l ol D e
RichE dit

When you find the RichEdit component, either:

¢ Select the component on the palette and then click on the form where you want
to place the component; or

* Double-click the component to place it in the middle of the form.

5 Text Editor Tutorial

= B3

RichE dit1

Each Delphi component is a class; placing a component on a form creates an
instance of that class. Once the component is on the form, Delphi generates the

code necessary to construct an instance of the object when your application is
running.

2 With the RichEdit component selected, in the Object Inspector, click the drop-

down arrow of the Align property and set it to alClient.

clor Make sure the RichEdit1 component is
|RichEdit1: TRichE dit [selected on the form.
Prapeties | Events | Look for the Align property in the Object
| align A Inspector. Click the down arrow to
Algrmert display the property’s drop-down list.
FHAnchaors LalClient i
BiDitade alLeft | SelectalClient.
BorderGtyle |3None
Borderwidth | 2IPight
Calor D —
Constraints [TSizeConstrain
Cursar crilefault
DragCursor | ciDrag =
2 hidden

Quick Start

Adding components to the form

The RichEdit component now fills the entire form so you have a large text editing
area. By choosing the alClient value for the Align property, the size of the RichEdit
control will vary to fill whatever size window is displayed even if the form is
resized.

‘7] 3 Double-click the StatusBar component on the Win32 page of the Component
palette. This adds a status bar to the bottom of the form.

4 To create one panel on the status bar to display the path and file name of the file
being edited by your text editor:

* Make sure the status bar is selected.
o After the SimpleText property, type untitled.txt. When you use the text editor,
if the file being edited is not yet saved, the file name will be untitled.txt.

¥ TextE ditor T utorial [_[O]x]
FichEditT

<——— Editing area

Muntitled. tet . A <— Status bar

¢ Click the (T'StatusPanel) ellipse of the Panels property to open the Editing
StatusBar1.Panels dialog box.

e Click the New Action button L on the toolbar of the dialog box to add a panel
to the status bar.

Tip You can also access the Editing StatusBarl.Panels dialog box by double-clicking
the status bar on your form.

(o]
Click the New Action button
of the dialog box’s toolbar.

Ml <— Or, right-click the dialog
box to display a context
menu. Click Add to create a
panel on the status bar that
can hold persistent text.

5% Editing Sta...

aal e e

[- TStatusPanel

v Toolbar

The Panels property is a zero-based array
so that you can access each panel you
create based on its unique index value. By
default, the first panel has a value of 0.

Each time you click Add, you add an
additional panel to the status bar.

5 Click the X to close the Editing StatusBar1.Panels dialog box.

Now the main editing area of the user interface for the text editor is set up.

Creating a text editor—a tutorial 4-5

Adding support for a menu and a toolbar

Adding support for a menu and a toolbar

For the application to do anything, it needs a menu, commands, and, for
convenience, a toolbar. Though you can code the commands separately, Delphi
provides an action manager to help centralize the code and an image list to centralize
the images to add to the commands on your menus and toolbar.

By convention, the actions that are connected to menu commands are named with
the name of the top-level menu and the command name. For example, the FileExit
action refers to the Exit command on the File menu.

Following are the kinds of actions our sample text editor application needs:

Table 4.1 Planning Text Editor commands
Menu Command On Toolbar? Description

File New Yes Creates a new file.

File Open Yes Opens an existing file for editing.

File Save Yes Saves the current file to disk.

File Save As No Saves a file using a new name (also lets you save a new file
using a specified name).

File Exit Yes Quits the editor program.

Edit Cut Yes Deletes text and stores it in the clipboard.

Edit Copy Yes Copies text and stores it in the clipboard.

Edit Paste Yes Inserts text from the clipboard.

Help Contents No Displays the Help contents screen from which you can
access Help topics.

Help Index No Displays the Help index screen.

Help About No Displays information about the application in a box.

To centralize both the code and images in an action manager, you need to add the
Action Manager editor to your project:

== 1 On the Additional page of the Component palette, double-click the ActionManager
component to drop it onto the form. Because it is nonvisual, you can place it
anywhere on the form.

4-6 Quick Start

Adding support for a menu and a toolbar

2 To display the captions for nonvisual components you drop on the form, choose
Tools | Environment Options, click the Designer page, and select Show component
captions, and click OK.

5% TextEditorT utorial M=

To display the captions for the

components you place on a form,
choose Tools|Environment
- Options|Designer and click Show
component captions.

Because the ActionManager
component is nonvisual, you
cannot see it when the application
is running.

Adding actions to the action manager

First you'll add the actions to the action manager and set their properties. By
convention, you'll name actions that are connected to menu commands with the
name of the top-level menu and the command name. For example, the FileExit action
refers to the Exit command on the File menu.

You will add both actions for which you set all the properties, and standard actions,
which have their properties automatically set.

1 Double-click the ActionManager component to open it.

The Editing Form1.ActionManagerl dialog box, or Action Manager editor,
appears.

2 Make sure the Actions tab is displayed. Click the drop-down arrow next to the
New Action button and click New Action.

Tip You can also right-click the Action Manager editor and choose New Action.

5¥ E diting Form4. ActionManagerl

Toolbars Actions IOptinns I

All Actions B

Ackions:

Click the drop-down

| arrow next to the New
Action button to create

new actions for the

action manager.

When the Delete button
is activated, you can
er cription ‘ remove existing actions

Cil+lns

from the actions list.

To add actions to your application simply drag and drop From either

Cateqgories or Actions onko an existing ActionBar,

Creating a text editor—a tutorial 4-7

Adding support for a menu and a toolbar

3 With No Category selected, in the Actions list, click Actionl. In the Object
Inspector, set the following properties:

* After Caption, type &New. Note that typing an ampersand before one of the letters
makes that letter a shortcut to accessing the command.

After Category, type File (this organizes the File commands in one place).

After Hint, type Create file (this will be the Help tooltip).

After Imagelndex, type 6 (this will associate image number 6 in your ImageList
with this action).

After Name, type Filelew (for the File | New command) and press Enter to save
the change.

i1 Editing Form1.ActionManager]

With Action1 selected in

Object Inspector

Tockars Actions |Optmns |

the Action Man?ger FileNew Tésction =
editor, change its Propeties | Evaris | [oracions & Ga-8ae e
Ipropernes in the Object sutoCheck |Fake of| | Cteaories: Aions:
nspector. Caption ENew
. . Category File

Caption is the name of Checked |False
the action, Category is Bk e

. o Grouplndex |0
the type of action, Hintis HelContest |0
a Help tooltip, Hink Create fil

Imagelndex ik

Imagelndex lets you e R PRt
refer to an image in the Secondany3hol (Urknown]
|mage ||St! and Name |_S ?:orlEul [DNUHE] = To add actions ta your application simply drag and drop from either
What the action Ca”ed n " hg y Categories or Actions onta an existing AckionBar.
the code. = Z

Close

4 Click the drop-down arrow next to the New Action button and click New Action.

5 With No Category selected, click Actionl. In the Object Inspector, set the following
properties:

* After Caption, type &Save.

¢ Click the drop-down arrow after Category and click File.
* After Hint, type Save file.

o After Imagelndex, type 8.

e After Name, enter FileSave (for the File | Save command).

6 Click the drop-down arrow next to the New Action button and click New Action.

7 With No Category selected, click Actionl. In the Object Inspector, set the following
properties:

o After Caption, type &Index.
* After Category, type Help.
* After Name, enter HelpIndex (for the Help | Index command).

8 Click the drop-down arrow next to the New Action button and click New Action.

9 Next to (No Category), select Action1. In the Object Inspector, set the following
properties:

* After Caption, type &About.
* Make sure Category says Help.
* After Name, enter Helpabout (for the Help | About command).

10 Keep the Action Manager editor on the screen.

4-8 Quick Start

Note

Adding support for a menu and a toolbar

Adding standard actions to the action manager

Next you'll add the standard actions (open, save as, exit, cut, copy, paste, and help
contents) to the action manager.

1

The Action Manager editor should still be displayed. If it’s not, double-click the
ActionManager component to open it.

Click the drop-down arrow next to the New Action button and click New
Standard Action.

The Standard Actions Classes dialog box appears.

In the Standard Actions Classes dialog box, scroll to the Edit category and select
the TEditCut, TEditCopy, and TEditPaste. Click OK to add these actions to a new
Edit category in the Categories list of the Editing Form1.ActionManager1 dialog
box

5% Standard Action Classes

Available Action Classes:

[Ma Category) E
i ta - Click the New Action button
drop-down arrow and choose
New Standard Action.

=
TEditSelectall
TEditUndo
TEditDelete

= Fomat The available standard
TRichEditBold i i
e actions are then displayed.
TRichEditUnderling To add an action to the
TRichEditStrke0ut : . : f
TRishEdiumbering Actions list, double-click it.
TRichEditalignLeft and drop from either
TRichE dittlignRight ar,
TRichE ditdlignCenter =

1
Ok Cancel | Help |

Click the drop-down arrow next to the New Action button and click New
Standard Action.

Scroll to the File category and select the TFileOpen, TFileSaveAs, and TFileExit
actions. Click OK to add these actions to the File category.

Click the drop-down arrow next to the New Action button and click New
Standard Action.

In the Standard Actions Classes dialog box, scroll to the Help category and select
the THelpContents. Click OK to add this action to the Help category.

Adding a custom Help | Contents command will display a Help file with a Help
Contents tab. The standard Help | Contents command brings up the last tabbed
page that was displayed, either Contents, Index, or Find.

Now you've added all the standard actions you need for your application. The
standard actions have their properties set automatically, including the image
index.

Creating a text editor—a tutorial 4-9

Adding support for a menu and a toolbar

8 Click (All Actions) to display both nonstandard and standard actions that you just
added.

§¥ Editing Form1.ActionM anager1

Toolbars Actions IOptionsl

[aractions 5] 3-fal e @
Categories: Ackions: C“Ckmg A“

(i Categor) Gpen.. Actions displays
£ the actions you
s just added for

every category.

Escription
Opens an existing file ‘

T 5dd actions ko your application simply drag and drop from either

Categories or Actions onto an existing AckionBar,
9 Click the Close button to close the Action Manager editor.

10 Click File | Save All to save your changes.

Adding images to the image list

In this section, you'll add images to the action manager for use on the menus and
toolbar.

The standard actions are associated with preassigned images from a built-in image
list that comes with Delphi. For example, the image index for the Edit | Cut action is 0.
All of the images you will use for your text editor commands are in this file.

To add the image list:

1 If you installed Delphi to the default directory, open C:\Program Files\Borland\
Delphi6\Source\Vcl\ ActnRes.pas. The StandardsActions window opens.

— 2 Select the ImageList1 component and copy and paste it to your form. It is a
nonvisual component, so it doesn’t matter where you paste it. The ActnRes.pas
unit is added to the Code editor.

e To copy ImageList1, right-click the component, and click Edit| Copy. On your
form, right-click, and choose Edit | Paste.

3 Close the Standard Actions window.

4-10 Quick Start

Adding support for a menu and a toolbar

4 Double-click ImageList1 to display all the possible images you can use.

Form1.ImageList] ImageList
i Selected Image 7 5
Transparent Colar Optians . —
The numbers underneath CE | .
the images correspond to Fil Caa) Siretch —I
the image index property Froe 5] |5 Cere el |
for each action. |
[Images Help
& i) © i
N 1} 1 2 3
You can click the Add e - 5|
button to add images > add. | Deete | Cea | Espor. |
from another source.

Following are the image index numbers that are used for each command:

Command Imagelndex property
Edit | Cut 0
Edit| Copy 1
Edit | Paste 2
File | New 6
File | Open 7
File | Save 8
File | SaveAs 30
File | Exit 43
Help | Contents 40
Note You can add images from an entirely different list. In the Form1.ImageList dialog

box, click the Add button and navigate to the Buttons directory provided with the
product. The default location is C:\Program Files\Common Files\Borland
Shared\Images\ Buttons.

For the File | Open command, for example, double-click fileopen.bmp. When a
message asks if you want to separate the bitmap into two separate ones, click Yes.
Each of the images includes an active and a grayed out version of the image. You'll
see both images. Delete the grayed out (second) image. Then make sure the image
index in the Object Inspector matches the new number assigned to this image in
the image list.

5 Click OK to close the ImageList dialog box.

Creating a text editor—a tutorial 4-11

Adding support for a menu and a toolbar

6 Select the ActionManager component and set its Images property to ImageListl.

5§ TextE ditorTutorial

Object Inspector

Actiontanager! Tactionkanager = ek

Properties | Events I

ActionBars |[TActionBars]
FileN ame
Imparttdenu 7
LinkeddéctionL [TActionListCollectio
Mame ActionManager]
PricrityScheduls [T StringlList]
State asMomal
Tag 0

All shown

[_[O[x]

=

ActionManager! ImageList

Z

Click the down arrow next to the Images property. Select ImageList1. This associates the images that
you'll add to the image list with the actions in the action manager.

Because you already set an image index for all of your actions, the images are
added to the correct action automatically. You've associated 8 images with your

actions.

7 To see the associated images in the action manager, open the ActionManager
component, make sure the Actions tab is selected, and click the All Actions

category.

ting Form1.ActionM anager1

Toolars Actions IOptionsI

e actions - ‘3-8 ¥
Cateqgories: Ackions:
[Hew =
1= Open... :I
Index
About
u Save
¥ oot =l

escription
Cuts the selection and puts it on the Clipboard ‘

To add actions ko your application simply drag and drop from either

Categories or Actions onto an existing ActionBar.

When you display the Action Manager
editor now, you'll see the images
associated with the actions.

8 Choose FilelSave All to save your changes.

9 Keep the Action Manager editor open.

Now you're ready to add the menu and toolbar.

4-12 Quick Start

Adding a menu

Adding a menu

Tip

In the next two sections, you'll add a customizable menu bar and toolbar, called
action bands.

The main menu bar includes three drop-down menus—File, Edit, and Help—and
their menu commands. With the Action Manager editor, you can drag each menu
category and its commands onto the menu bar in one step.

1 From the Additional page of the Component palette, double-click a
ActionMainMenuBar component to add it to the form.

A blank menu bar appears at the top of the form.

2 Open the Action Manager editor if it isn’t already and select File in the Categories
list. The submenu commands are not in the exact order that you want them, but
you can easily change this by using the Move Up and Move Down buttons, or
Ctri+T and Ctri+l.

* Select the Open action and click the Move Up button on the Action Manager
editor toolbar, so that the File commands are listed in the following order: New,
Open, Save, Save As, and Exit.

3 Drag File to the menu bar. The File menu and its submenu commands appear on
the menu bar.

You can also reposition menu commands after you've dragged the menu category
to the menu bar. For example, click File on the menu bar so its submenu
commands appear, and drag Open above New and then back again.

¢ TextE ditor T utorial 9 =1 |
File. ‘
[RichEcitr

When you select the File 5% Editing T extE ditorT utorial ActionManager

category from the Action Toobers Actons | options |

Manager editor and drag it to T — a-rale s

the menu bar, you drag all its o egtons:

(Mo Categary)

submenu commands with it. O tew
or M save

(= Open.

i

(4l Actions) =
B Savess..
1. Exit

escription
Create file ‘

[Toaddactions o your spplication simply drag and crop from sither

Categaries or Actions onto an existing ActionBar,

4 From the Categories list of the Action Manager editor, drag Edit to the right of File

on the menu bar.

5 From the Categories list of the Action Manager editor, drag Help to the right of the

Edit on the menu bar.

Creating a text editor—a tutorial 4-13

Adding a toolbar

6 Click the Help menu to view its submenu commands. Drag the Contents
command to above the Index command.

You can change the position

of submenu commands in [FichEc & Dorteris
two ways: —
You can select an action in =) -

the Action Manager editor
and click the Move Up or
Move Down button. Or, after
you drag the Help category
to the menu bar, drag
Contents above About.

Actiontanager] ImageLitl

7 Press Esc or click the Help menu again to close it.
8 Choose FilelSave All to save your changes.

Now you'll want to add a toolbar to provide easy access to the commands.

Adding a toolbar

Since you've set up actions in an action manager, you can add some of the same
actions that were used on the menus to an action band toolbar, which will resemble a
Microsoft Office 2000 toolbar when you're finished with it.

== 1 On the Additional page of the Component palette, double-click the ActionToolBar
% component to add it to the form.

A blank toolbar appears under the menu bar.

Tip You can also add an action band toolbar by opening the Action Manager editor,
clicking the Toolbars tab, and clicking the New button.

2 If the Action Manager editor isn’t displayed, open it and select File in the
Categories list.

3 In the Actions list, select New, Open, Save, and Exit and drag these items to the
toolbar. They automatically appear as buttons with each assigned image.

4 In the Action Manager editor, select Edit in the Categories list.

4-14 Quick Start

Tip

Adding a toolbar

¢ In the Actions list, select Cut, Copy, and Paste and drag these items to the
toolbar.

5% TentE ditorT utorial

File Edi Help I

'O tew 5 oo e FLEst & ot B Conw oo <= The ActionToolBarcomponent
FicrEdn is added under the menu bar
by default.
- M@ You can move the menu
clionkanager1 ImageList!

toolbar above the menu bar
and vice versa by dragging it.

You can drag buttons on and
off the toolbar.

2

If you drag the wrong command onto the toolbar, you can drag it off again. Or you
can also select the item in the Object TreeView and click the delete key. You can
reposition the buttons simply by dragging them to the right or left of each other.

5 Choose File | Save All to save your changes.

6 Press F9to compile and run the project.

7

You can also run the project by clicking the Run button on the Debug toolbar or
choosing Run | Run.

When you run your project, Delphi opens the program in a runtime window like
the one you designed. The menus and toolbar buttons work although some of the
commands are grayed out.

Your text editor already has lots of functionality. You can type in the text area. If
you select text in the text area, the Cut, Copy, and Paste buttons should work.
However, there’s still more to do to activate the commands.

To return to design mode, click X in the upper right corner.

Clearing the text area (optional)

When you ran your program, the name RichEdit] appeared in the text area. You can
remove that text using the Strings List Editor. If you don’t clear the text now, the text
should be removed when initializing the main form in the last step.

To clear the text area:

1
2

On the main form, click the RichEdit] component.

In the Object Inspector, next to the Lines property, double-click the value (TStrings)
to display the Filter editor.

Select and delete the text (RichEdit1) you want to remove in the Filter editor and
click OK.

Save your changes and trying running the program again.

The text editing area is now cleared when the main form is displayed.

Creating a text editor—a tutorial 4-15

Writing event handlers

Writing event handlers

Up to this point, you've developed your application without writing a single line of
code. By using the Object Inspector to set property values at design time, you've
taken full advantage of Delphi‘s RAD environment. In this section, you'll write
procedures called event handlers that respond to user input while the application is
running. You'll connect the event handlers to the items on the menus and toolbar, so
that when an item is selected your application executes the code in the handler.

For the nonstandard actions, you must create an event handler. For the standard
actions, such as the File | Exit and Edit | Paste commands, the events are included in
the code. However, for some of the standard actions, such as the File | Save As
command, you will want to write your own event handler to customize the
command.

Because all the menu items and toolbar actions are consolidated in the Action
Manager editor, you can create the event handlers from there.

Creating an event handler for the New command

To create an event handler for the New command:
1 Choose View | Units and select Unitl to display the code associated with Form1.

2 You need to declare a file name that will be used in the event handler, adding a
custom property for the file name to make it globally accessible. Early in the
Unitl.pas file, locate the public declarations section for the class TForm1 and on
the line after { Public declarations }, type:

FileName: String;

Your screen should look like this:

B Unitl.pas [_ o] =]
uni | -
private 2
{ DPravate declarations)
public
{ fublic declarations } This line defines FileName
FileMName: String: . . .
end: as a string which is globally
J accessible from any other
va;urml: TForml; methOds
implementation
- o
| 58: 5 [Modified [Insert "Code/ Diagram,/

3 Press F12to go back to the main form.
Tip F12is a toggle that takes you back and forth from the form to the associated code.
4 Double-click the ActionManager to open it.

4-16 Quick Start

Tip

Note

Writing event handlers

5 In the Action Manager editor, select the File category and then double-click the

New action.

You can also double-click the File | FileNew action in the Object TreeView.

The Code editor opens with the cursor inside the event handler.

5% Editing Form1.ActionManagerl

Toolbars Actions | options |

Al Actions - ‘a-fa & % |

Categories: Actions: B Unitl.pas H[=] B3

(o Category) i - =

o unitl | -
= |

Help
(Al Actions) begin

i Exit

L Ex / end;
| | €

escription

’—‘éveate file / end.

To add actions ta four applicatisf simply drag and drop fro

Cateqories or Actfons onto apréxisting ActionBar.

|4
Double-click the action to

o |

procedure TForml.FilelNewExecute (Sender: TObject):

58: 5 [Modified Insert

create an empty event

\Code/Diagram /

handler where you can
specify what will happen when
users execute the command.

6 Right where the cursor is positioned in the Code editor (between begin and end),

type the following lines:

RichEditl.Clear;
FileName := 'untitled.txt';
StatusBarl.Panels[0].Text := FileName;

Your event handler should look like this when you're done:

B Unitl.pas [_ o] =]
uni | -
implementation =
(57 <. arm _— This line clears the text area

FileMame := 'untitled.txt':;

end;

end.

when you create a new file.

i| |proceaure TTE»«tEle
begin Lo .
RichEdicl.clear /j~ This line calls the new file

“untitled.txt.”

StatusBarl.Pansls[0].Text := FileName: \ Lo .
— This line puts the file name

into the status bar.

ol

\CodeﬂDiaglam,ﬁ

| 58 5 Modified Insent

Save your work and that’s it for the File | New command.

You can resize the code portion of the window to reduce horizontal scrolling.

Creating a text editor—a tutorial 4-17

Writing event handlers

Creating an event handler for the Open command

To open a file in the text editor, you want a standard Windows Open dialog box to
appear. You've already added a standard File | Open command to the Action
Manager editor, which automatically includes the dialog box. However, you still
need to customize the event handler for the command.

1 Press F12 to locate the main form (or select View | Forms and choose Form1).
2 Double-click the Action Manager editor to open it. Select the File | Open action.

3 In the Object Inspector, click the plus sign to the left of the Dialog property to
expand its properties. Delphi names the dialog box FileOpen1.OpenDialog by
default. When OpenDialog1’s Execute method is called, it invokes the standard
dialog box for opening files.

4 Set the following properties of FileOpen1.Dialog:
o Set DefaultExt to txt.

¢ Double-click the text area next to Filter to display the Filter editor. In the first
row under the Filter Name column, type Text files (*.txt).In the Filter
column, type *.txt. In the second row under the Filter Name column, type A11
files (*.*) and in the Filter column, type *.*. Click OK.

Filter Editor [%]
Filter M ame: I Filter lﬂ
Text files [*.txt) * bt y . .
Aﬁ?ilelse[i."] ' x; Use the Filter editor to define

filters for the
FileOpen1.Dialog and
FileSaveAs1.Dialog actions.

=

Ok I Lancel | Help |

o After Title, type Open file. These words will appear at the top of the Open dialog
box.

5 Click the Events tab. Double-click the OnAccept event so that FileOpenlAccept
appears.
6 The Code editor opens with the cursor inside the event handler.

7 Right where the cursor is positioned in the Code editor (between begin and end),
type the following lines:

RichEditl.Lines.LoadFromFile (FileOpenl.Dialog.FileName);
FileName := FileOpenl.Dialog.FileName;
StatusBarl.Panels[0].Text := FileName;

4-18 Quick Start

Tip

Writing event handlers

Your FileOpen event handler should look like this when you're done:

B Unitl_pas [_ O] <]
Urit! | gy
=l This line inserts the text
procedure TForml.FileOpenliccept (3ender: TObject): from the SpeCiﬁed me
begin '
RighEditl.Lines.LoadFromFile (FileOpenl.Dialog.FileName) ; This line sets the file name
i FileName := FileQpenl.Dialog.FileName: tO the one in the Open

Statusbarl.Panels[0] . Text := FileName; .
s \i dialog box.

end. — This line puts the file name
into the status bar.

E— r
| 58: 5 Modified Insert \CodeDiagram

That’s it for the File | Open command and the Open dialog box.

Creating an event handler for the Save command

To create an event handler for the Save command:

1 Press F12 to display the form. Double-click the ActionManager component to open
it.

2 Double-click the File | Save action.
The Code editor opens with the cursor inside the event handler.

You can also double-click the File | FileSave action in the Object TreeView.

T Fam] With the Object TreeView,

e g'im::;g:‘ you can access the event
iy EdI handlers for each action.
T e Double-click the action to
N - open the Code editor and
ﬁ FleDpent write a new event handler.
oy, FileExit] —
& Help
ool LinkedéctionLists

= i% ImageList1 =

3 Right where the cursor is positioned in the Code editor (between begin and end),

type the following lines:

if (FileName = 'untitled.txt') then
FileSaveAsl.Execute

else
RichEditl.Lines.SaveToFile (FileName) ;

This code tells the text editor to display the SaveAs dialog box if the file isn’t
named yet so the user can assign a name to it. Otherwise, save the file using its
current name. The SaveAs dialog box is defined in the event handler for the Save
As command on page 4-20. FileSaveAs1BeforeExecute is the automatically generated
name for the Save As command.

Creating a text editor—a tutorial 4-19

Writing event handlers

Your event handler should look like this when you're done:

B Unitl_pas =1 E3
Urit! | gy
L1 TFi 1. Files E (Send TChj 1 ;I
procedure orml. iledaveExecuce ender: ject) . .
begin These lines state that if the
if (FileNeme = 'untitlecd.txt') then file is untitled, the File Save
| FileSavelsl.Execute AS d|alog bOX appeal’s.
else
RichEditl.Lines.SaveToFile (FileNawe) 4 1
end: | with the current file name.
end
N — _lJ
| 58 5 Madified |Insent [\Cade fDiagram

That’s it for the File | Save command.

Creating an event handler for the Save As command

Otherwise, the file is saved

When SaveDialog’s Execute method is called, it invokes the standard Windows Save
As dialog box for saving files. To create an event handler for the Save As command:

1 Press F12 to display the form. Double-click the ActionManager component to open

it.

2 Select the File | SaveAs action.

3 In the Object Inspector, click the Properties tab, and set the following properties
for the FileSaveAs1 dialog box. Delphi names it FileSaveAs1.Dialog by default.

4 Click the plus sign to the left of the Dialog property and set the following

properties:
* Set DefaultExt to txt.

* Double-click the text area next to Filter to display the Filter editor. In the Filter
editor, specify filters for file types as in the Open dialog box. In the first row
under the Filter Name column, type Text files (*.txt).In the Filter column,
type *.txt. In the second row under the Filter Name column, type 211 files

(*.*) and in the Filter column, type *.*. Click OK.

e Set Title to Save as.

5 In the Object Inspector, click the Events tab. Double-click the text area next to
BeforeExecute so that FileSaveAslBeforeExecute appears. The Code editor opens with

the cursor inside the Code editor.

6 Right where the cursor is positioned in the Code editor, type the following line:

FileSaveAsl.Dialog.InitialDir := ExtractFilePath(Filename);

7 In the Object Inspector, the Events tab should still be displayed. Double-click the

text area next to the OnAccept event so that FileSaveAslAccept appears.

4-20 Quick Start

9

Writing event handlers
The Code editor opens with the cursor inside the event handler. Type the
following lines.

RichEditl.Lines.SaveToFile (FileSaveAsl.Dialog.FileName);
FileName := FileSaveAsl.Dialog.FileName;
StatusBarl.Panels[0].Text := FileName;

Your FileSaveAs event handler should look like this when you're done:

E Unitl.pas [-1O] x]
uritl | o o
z This line sets the default
procedure TForml.File3avelslEeforeExecute (Sender: TObject): / directory tO the |aSt one
bhegin
FileSavehsl.Dialog.InitialDir := ExtractFilePath(Filename): accessed
ey . This line saves the text to

the specified file.

procedure TForml.FileSavelsliccept (Sender: TObhject):

hegin . . 5
RichEditl.Lines.SaveToFile (F1leSaveA31.D1aélM’d Th|5 Sets the main form S
FileMame := FileSavelsl.Dialog.Filelame: FileName to the name
StatusBarl.Panels[0] .Text := Filelame; SpeCiﬁed in the SaVeAS

end; \ dlalog box.

end.

o

\

— This puts the file name in
the status bar.

Ll
| 58 5 Modified Insert \Code/Diagram

That’s it for the File | SaveAs command.

Choose File | Save All to save your project.

10 To see what it looks like so far, run the application by pressing F9.

4 Text Editor Tutorial M= E
File Edit Help

[Mew - 0pen.. [@S5ave B Est

IRichE dit1

Your application has full
functionality. The images
appear next to commands
with which you associated an
image index.

Notice that the nonvisual
components aren’t there.The
menus, toolbar, text area, and
status bar all appear on the
form.

Most of the buttons and toolbar buttons work but you're not finished yet.

If you receive any error messages at the bottom of the Code editor, click them to go
right to the place in the code where the error occurred. Make sure you've followed
the steps as described in the tutorial.

11 To return to design mode, click X in the upper right corner.

Creating a text editor—a tutorial 4-21

Creating a Help file

Creating a Help file

Note

It’s a good idea to create a Help file that explains how to use your application. Delphi
provides Microsoft Help Workshop in the C:\Project Files\Borland | Delphi6\Help\
Tools directory which includes information on designing and compiling a Windows
Help file. In the sample text editor application, users can choose Help | Contents or
Help | Index to access a Help file with either the contents or index displayed.

Earlier, you created HelpContents and HelpIndex actions in the action manager for
displaying the Contents tab or Index tab of a compiled Help file. You need to assign
constant values to the Help parameters and create event handlers that display what
you want.

To use the Help commands, you'll have to create and compile a Windows Help file.
Creating Help files is beyond the scope of this tutorial. However, you can download
a sample rtf file (TextEditor.rtf), Help file (TextEditor.hlp) and contents file
(TextEditor.cnt):

1 From your C:\Project Files\Borland\ Delphi6\Help directory, open D6X1.zip.

2 Extract and save the .hlp and .cnt files in your Text Editor directory; by default,
C:\Project Files\Borland \ Delphi6\Projects\ TextEditor.

You can use any HLP or CNT file (such as one of the Delphi Help files and its
associated CNT file) in your project. You will have to rename them as
TextEditor.hlp and TextEditor.cnt for the application to find them.

Creating an event handler for the Help Contents command

To create an event handler for the Help Contents command:
1 Double-click the ActionManager component to open it.

2 On the Action Manager editor, select the Help category, then double-click the
HelpContents action.

The Code editor opens with the cursor inside the event handler.

3 Right before where the cursor is positioned in the text editor, that is, right before
begin, type the following lines:

const
HELP_TAB = 15;
CONTENTS_ACTIVE = -3;
Right after begin, type:
Application.HelpCommand (HELP_TAB, CONTENTS_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 displays the Help dialog and setting CONTENTS_ACTIVE to -3
displays the Contents tab.

4-22 Quick Start

Note

Creating a Help file

Your event handler should look like this when you're done:

B Unitl_pas =1 E3
Urit! | gy
=] . .
procedure TForml.HelpContentslExescute (Sender: TObject): These lines define the

. — command and data
el Tan = 15; parameters of the
i CONTENTS_ACTIVE = —3: HelpCommand method
bhegin of TApplication.

Application.HelpConmand (HELP_TAE, CONTENTS_ACTIVE); NJ Th d | h
— This says to display the

Help dialog with the
contents tab displayed.

| 58: 5 Modified Insert \CodeDiagram

To get Help on the HelpCommand event, put the cursor next to HelpCommand in
the editor and press F1.

That’s it for the Help | Contents command.

Creating an event handler for the Help Index command

To create an event handler for the Help Index command:

1 The Action Manager editor should still be displayed. If it’s not, double-click the
ActionManager component on the form.

2 In the Action Manager editor, select the Help category and then double-click the
HelpIndex action.

The Code editor opens with the cursor inside the event handler.

3 Right before where the cursor is positioned in the text editor, that is right before
begin, type the following lines:

const
HELP_TAB = 15;
INDEX_ACTIVE = -2;

Right after begin, type
Application.HelpCommand (HELP_TAB, INDEX_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 again displays the Help dialog box and setting INDEX_ACTIVE
to -2 displays the Index tab.

Creating a text editor—a tutorial 4-23

Creating an About box

Your event handler should look like this when you're done:

E Unit1_pas [_ O] =]
Urit!] - -

&l These lines define the

przs:::re TForml.HelpIndexExecute (Sender: TCbhject): command and data
HELP_TAB = 15: parameters of the
INDEX_ACTIVE = -2; HelpCommand method of
bhegin

TApplication.
Application.HelpCorwand (HELP_TAB, INDEX ACTIVE); \:l
end; —— This says to display the

Help dialog with the index
tab displayed.

end.

4 o
| 58 5 Modified |Insert 'CodefDiagram

That'’s it for the Help | Index command.

Creating an About box

Many applications include an About box which displays information on the product
such as the name, version, logos, and may include other legal information including
copyright information.

You've already set up a Help About command on the action manager.

To add an About box:
1 Choose File | New | Other to display the New Items dialog box and click the Forms
tab.
2 On the Forms tab, double-click About Box.
Projects I Data Modules | Business | SiteEupres: | SO4P I

The About Box is one

of several forms

New | Activel | M ultitier | TextEditor2 Farms I Dialogs

Duwallistbox QuickReport QuickReport QuickReport predeSIQned for Delphl
bel L M /Detail .
) = R Mo When Copy is selected
by default, a copy of

the About Box is added

Tabbed pages .
to your project.

& Copy " lnheit ¢ Use

oK I Cancel | Help |

A new form is created that simplifies creation of an About box.

3 Select the form itself (click the grid portion) and in the Object Inspector, change its
Caption property to About Text Editor.

4-24 Quick Start

Creating an About box

4 In the Object Inspector, click the Properties tab and change the Caption properties
for the following TLabel items:

¢ Change Product Name to Text Editor.
e Add 1.0 after Version.
* Add the year after Copyright.

i About Text Editor H=]
Test Editor 2 The Object Repository
Vit : contains a standard About
erzion 1.0 - .
: box that you can modify as
I you like to describe your
Eopyright 2001 : application.

Camments

5 Save the About box form by choosing File | SaveAs and saving it as About.pas.

6 In the Delphi Code editor, you should have three unit files displayed: Unit1,
ActnRes, and About. Click the Unitl tab to display Unitl.pas. You don’t need the
ActnRes unit but you can leave it there.

7 Click the Unitl tab, and add the new About unit by typing the word About to the
list of included units in the uses clause.

Click the tab to display a file associated with a unit. If you open
other files while working on a project, additional tabs appear on the
Code editor.

B Unit1.pas

Unit1 IActhesl Aboutl ol

unit Unitci; A
interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,
Dialogs, StdActns, Actnlist, ActnMan, ComCtrls, StdCtrls, ImglList, J
AptnCtrls, ToolWin, Ac:t,nl‘{enus

type
TForml = class (TForm)
RichEditl: TRichEdit;
StatusBarl: T3tatusBar:

A _'l_I
| 58 5 Modified |Insert ' Code/,Diagram

When you create a new form for your application, you need to add it to
the uses clause of the main form. Here you're adding the About box.

8 Press F12 to return to design mode. Double-click the ActionManager component to
open it.

Creating a text editor—a tutorial 4-25

Completing your application

9 Double-click the HelpAbout action to create an event handler. Right where the
cursor is positioned in the Code editor, type the following line:

AboutBox. ShowModal ;

This code opens the About box when the user clicks Help | About. ShowModal opens
the form in a modal state, a runtime state when the user can’t do anything until the
form is closed.

Completing your application

The application is almost complete. However, you still have to specify some items on
the main form. To complete the application:

1 Press F12to locate the main form.

2 Check that focus is on the form itself, not any of its components. The list box at the
top of the Object Inspector should say Forml: TForml. (If it doesn’t, select Fornl from
the drop-down list.)

3 Click the Events tab, and next to the OnCreate event, choose FormCreate from the
drop-down list to create an event handler that describes what happens when the
form is created (that is, when you open the application).

Olbject Inspector Check here to make sure focus is on the

[Form: TFam1 <——=1 main form. If it's not, select Form1 from the

rop-down list.
Properties Events | d op do! S

Ondclivate o
OnCanResize
OnClick
OnClose
OnCloseQuemy
OrConstrained|
OnContextFop Double-click here to create an event handler
OrCreate |FomCreate] | <—— for the form’s OnCreate event.
OnDbClick
OrDeactivate
OnDestroy
OnDockDrop =
A

|A\I shawn

4 Right where the cursor is positioned in the Code editor, type the following lines:

Application.HelpFile := ExtractFilePath(Application.ExeName) + 'TextEditor.hlp';
FileNew.Execute

4-26 Quick Start

Completing your application

This code initializes the application by application by associating a Help file,
setting the value of FileName to untitled.txt, putting the file name into the status
bar, and clearing out the text editing area.

B Unitl.pas M [=] B3
Unitt | -
=

procedure TForml.FormCreate(Sender: TObject):
begin T
Application.HelpFile := ExtractFilePath{Application.ExeName] + 'TextEditor.nlp': <—— TS ling initializes the

FileNew.Execute app“CﬁtiOﬂ.

end;

— This line calls the
FileNew.Execute
procedure that you first
wrote for the FileINew
action on page 4-16.

end.

|l _>l;I

| 58 5 |Modified [Insert | Code [Diagtam

5 Choose File | SaveAll to save your changes.
6 Press F9to run the application.

Congratulations! You're done.

Creating a text editor—a tutorial 4-27

4-28 Quick Start

Customizing the desktop

This chapter explains some of the ways you can customize the tools in Delphi’s IDE.

Organizing your work area

The IDE provides many tools to support development, so you'll want to reorganize
your work area for maximum convenience, including rearranging your menus and
toolbars, combining tool windows, and saving a new way your desktop looks.

Arranging menus and toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette
by clicking the grabber on the left-hand side of each one and dragging it to another
location.

You can move menus and toolbars within the main window. Drag the
grabber (the double bar on the left) of an individual toolbar to move it.

437 Delphi & - Projectl

File Edit Search “iew Project Bum Component Databasze Took ‘window Help <Mone> I @

D@ H @7 S € £ o H b - ERCAiNE = |

Standard | Addiional | Win2 | Svstem | Data Access | Data Controk: | dbEsoress | DataSnan | BDE | 400 | InteBiase | S04F | IntemetExoress | It 1%
h O R AMEwr @ S TEH G

Customizing the desktop 5-1

Organizing your work area

You can separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether. This is useful if you have a dual
monitor setup.

I File Edit Seach View Project Bun Component Database Tools ‘Window Help Maln WIr'IdOW
Standard x| Wiew E|llinermet =] x| organized
Dﬁ;'ﬂ‘ﬁﬁ‘gﬂ ?"“l.ﬁ o @Iﬁl“m glﬂ‘& & [[<Honex :I'l@.% differenﬂy.
Component Palette [x]

Standard | Addiional | Win32 | Sustem | Data Access | Data Controls | dbExoress | DataSnan | BDE | DO | InterBase | S04P | IntemetExoress | et 1 *

kO £ AME oK 6 ST E L H

You can add or delete tools from the toolbars by choosing View | Toolbars |
Customize. Click the Commands page, select a category, select a command, and drag
it to the toolbar where you want to place it.

Toobars Commands I Dptlnnsl
Calegories: Commands: On the Commands
| Separator = page, select any
P command and drag it
o Call Stac
I onto any toolbar.
@ Threads i
i On the Options page,
4 CFU click Show tooltips to
i make sure the hints for
Todls E Local Yarisbles
b e & components and
To add d buttons, d d d ds onto & toolb i
T e s, ST e o toolbar icons appear.

Cloze Help

For more information...
See “toolbars, customizing” in the online Help index.

Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means attaching windows to each other so that they move
together—helps you use screen space efficiently while maintaining fast access to
tools.

From the View menu, you can bring up any tool window and then dock it directly to
another. For example, when you first open Delphi in its default configuration, the

5-2 Quick Start

Organizing your work area

Code Explorer is docked to the left of the Code editor. You can add the Project
Manager to the first two to create three docked windows.

Here the Project Manager and Code
Explorer are docked to the Code editor.

/
B Unitl_pas 8 =] |
e | E e
[Project exe uniy Upiti: =
You can combine, or B terface

“dock” windows with

either grabbers, as on
the right, or tabs, as %
on page 5-4.

indows, Messages, SysUtils, Variants, Classes, Graphics, Contr
ialogs, StdCtrls:

e
TForml = class (TForm)

Buttonl: TBucton:

CheckBoxl: TCheckBox:

Labell: TLabel;
private -
o1 Trom { Brivate declarations }

[Variables/Canstants public
=3 Usee { Public declarations }

£

end;

var
Forml: TForml;

implementation

(§R *.dfm)

end. hd
N | v

13: 37 [Modified [Insert ['\Code {Diagram [

B

To dock a window, click its title bar and drag it over the other window. When the
drag outline narrows into a rectangle and it snaps into a corner, release the mouse.
The two windows snap together.

v TFoml o [0 | -
. . 1. (] YarisblesConstants unit Unitl: A
To get docked windows with @ uses intertane
grabbers, release the
mouse When the drag “s;induws, Messages, SysUtils, Variants, Classes, Graphics, Contr
outline snaps to the Dislogs, Staccrls:
window’s corner. _

TFormi = class (TForm)
Buttonl: TButton;

Check!
Lahel
ivat I
private o 10 8 x 8
{ Prit MNew Remove Activate
public
{ Publ | Path |
end; C:\Program Files
C:\Program Files
var
Formi: 1
implementé
{SR *.dfm}
end. hJ
=] s
13 37 Modified [Insert |\Code/Diagram y

Customizing the desktop 5-3

Organizing your work area

You can also dock tools to form tabbed windows.

B Unitl_pas (O] %]
T =
w3 TFarm1 l il
(23 Variables/Constant unit Unitl; =
& Uses ; To get docked windows that are
interface
tabbed, release the mouse before
uses .
Vindovs, Messages, SYsUtils, VAriants, Classes, Graphics, COntro. the drag outline snaps to the other
Dimlogs, StdCtrls; window’s corner.
type
TForml = class|TForm)
Buttonl: TButton,
Checkig & & Unit1.pas [O]
Labell ENTT] -
private — Exploring Uit pas §Project Manager | =
{ Priv. oject] .ere unit Unitl; =
public —— [Fosdloe 5 | Fj ; > .
{ Pupy Fles ew flen interface
end; =5 ;’ f‘:'u Files |_Path uses
iz] Project
var (23 FrojeciGroupd C:\Program Files\Borland Vindows, Messages, SysUtils, Variants, Classes
=] Project1. exe C:\Program Files\Borland Dislogs, StdCrrls:
Forml: TI
type
implemental TForml = class (TForm)
Buttonl: TButton;
(¥R =.afm) CheckBox1: TCheckBox;
Labell: TLahkel;
end. i I
private
£ { Private declarations }
‘ #| 4 8 |Modified [Insert puvlic

{ Puplic declarations }
end;

var
Forml: TForml:

implementation
{5 *.adfm)
end. .
A 3
4 8 |Modified [Insent |\Code/Diagram A

To undock a window, double-click its grabber or tab.

To turn off automatic docking, either press the Ctrl key while moving windows
around the screen, or choose Tools | Environment Options, click the Designer page,
and uncheck the Auto drag docking check box.

For more information...
See “docking” in the online Help index.

Saving desktop layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE
includes a pick list of the available desktop layouts and two icons to make it easy to
customize the desktop.

Save current
desktop

“IMy deskitnp j| 4‘, Iﬁi',‘

Named desktop 3et ﬁebug
settings are listed here. eSKIop

5-4 Quick Start

Customizing the Component palette

Arrange the desktop as you want, including displaying, sizing, and docking
particular windows.

On the Desktops toolbar, click the Save current desktop icon or choose View |
Desktops | Save Desktop, and enter a name for your new layout.
Save Desktop

Save curent desklop as: Enter a name for the
] &l desktop layout you want

|:| Cancel to save and click OK.

For more information...
See “desktop layout” in the online Help index.

Customizing the Component palette

In its default configuration, the Component palette displays many useful VCL or
CLX objects organized functionally onto tabbed pages. You can customize the
Component palette by:

Hiding or rearranging components.

Adding, removing, rearranging, or renaming pages.

Creating component templates and adding them to the palette.
Installing new components.

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog box. You can open this dialog box in several ways:

¢ Choose Component | Configure Palette.
¢ Choose Tools | Environment Options and click the Palette tab.

Customizing the desktop 5-5

Customizing the Component palette

¢ Right-click the Component palette and choose Properties.

Palette Properties

Falette |

Pages: LComponents:

1 Mame Package

Additional

win32 .

System

Data foozae TMairbeny dolstd60

DBExprass =0 You can rearrange the palette
[rata Snap % TPopuptenu dolstds0 and add new pages
AU0 A TLabel dolstdEll

InterBiase

InternetExpress

bl [abT | Edi delstds0

‘wWebSnap

Fasthet Themo doktds0

Decizion Cube |

OReport TButton delstd6l

Dialogs JS—

Win 3.1 5 [I T S I~

Add | Delete | FRenarne. | tawve U | Mawe Down |
; ak I Cancel | Help |

For more information...
Click the Help button in the Palette Properties dialog box.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
to reuse on other forms.

To create a component template, simply arrange one or more components on a form
and set their properties in the Object Inspector, and select all of the components by
dragging the mouse over them. Then choose Component | Create Component
Template. When the Component Template Information dialog box opens, select a
name for the template, the palette page on which you want it to appear, and an icon
to represent the template on the palette.

5-6 Quick Start

Customizing the Component palette

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

s ;

" Buront

[~ CheckBoxl -

Component Template Informati

LCompanert name: |iiE

Jatd
Palelte page Templates -
Palette leon: Change.

Ok | Cancel | Help |

For more information...
See “templates, component” in the online Help index.

Installing component packages

Whether you write custom components or obtain them from a vendor, the
components must be compiled into a package before you can install them on the
Component palette.

A package is a special DLL containing code that can be shared among Delphi
applications, the IDE, or both. Runtime packages provide functionality when a user
runs an application. Design-time packages are used to install components in the IDE.
Delphi packages have a .bpl extension.

Customizing the desktop 5-7

Customizing the Component palette

If a third-party vendor’s components are already compiled into a package, either
follow the vendor’s instructions or choose Component | Install Packages.

[T [<]

Packages |

— Design packages

3t Components
orland AD0 DB Components

These components come preinstalled
in Delphi. When you install new

oiland Basze Cached ClientD ataset Component
orland BDE DB Components

Barland Database Companents

Borland D ataSnap Connection Components |

|c:\program files\borlanddelphitBin\dclacts0. bpl

Add... BRemave Edit | LCompanents |

1~ Runtime packages
[Build with runtime pack ages
IVclEU,VcI\:IbEEI,\:Ic\ulhceZkBU,VclM|\:|EEI,VCI><EU,V‘:\ManU,v A

o |

Cancel | Help |

For more information...

components from third-party vendors,
their package appears in this list.

Click Components to see what
components the package contains.

See “installing components” and “packages” in the online Help index.

Using frames

A frame (TFrame), like a form, is a container for components that you want to reuse.
A frame is more like a customized component than a form. Frames can be saved on
the Component palette for easy reuse and they can be nested within forms, other
frames, or other container objects. After a frame is created and saved, it continues to
function as a unit and to inherit changes from the components (including other
frames) it contains. When a frame is embedded in another frame or form, it continues
to inherit changes made to the frame from which it derives.

To open a new frame, choose File | New | Frame.

== Frame? - E X

MName: I

Address: I

For more information...

You can add whatever visual
or nonvisual components
you need to the frame. A new
unit is automatically added to
the Code editor.

See “frames” and “TFrame” in the Help index.

5-8 Quick Start

Setting project options

Adding ActiveX controls

You can add ActiveX controls to the Component palette and use them in your Delphi
projects. Choose Component | Import ActiveX Control to open the Import ActiveX
dialog box. From here you can register new ActiveX controls or select an already
registered control for installation in the IDE. When you install an ActiveX control,
Delphi creates and compiles a “wrapper” unit file for it.

For more information...
Choose Component | Import ActiveX Control and click the Help button.

Setting project options

If you need to manage project directories and to specify form, application, compiler,
and linker options for your project, choose Project | Options. When you make
changes in the Project Options dialog box, your changes affect only the current
project; but you can also save your selections as the default settings for new projects.

Setting default project options

To save your selections as the default settings for all new projects, in the lower-left
corner of the Project Options dialog box, check Default. Checking Default writes the
current settings from the dialog box to the options file Defproj.dof, located in the
Delphi6\Bin directory. To restore Delphi’s original default settings, delete or rename
the Defproj.dof file.

For more information...
See “Project Options dialog box” in the online Help index.

Specifying project and form templates as the default

When you choose File | New | Application, Delphi creates a standard new application
with an empty form, unless you specify a project template as your default project. You
can save your own project as a template in the Object Repository on the Projects page
by choosing Project | Add to Repository (see “Adding templates to the Object
Repository” on page 5-10). Or you can choose from one of Delphi’s existing project
templates from the Object Repository (see “The Object Repository” on page 2-5).

To specify a project template as the default, choose Tools | Repository. In the Object
Repository dialog box, under Pages, select Projects. If you've saved a project as a

Customizing the desktop 5-9

Specifying project and form templates as the default

template on the Projects page, it appears in the Objects list. Select the template name,

check New Project, and click OK.

Object Repository

Data Modules

£dd Page. ..

= ian
ﬁ ‘win35/98 Lago Application

The Object Repository’s pages
contain project templates only,
form templates only, or a
combination of both.

Business = /20010 Logn Application .
Webine _lokcrae | Zid e To set a project template as the
N Benams Page. default, select an item in the
et iepsstey Objects list and check New
Edit Object.. Project.
Deete Object To set a form template as the
default, select an item in the
Objects list and check New Form
New Praject .
2| 3 [HenProes or Main Form.
ok I Cancel | Help |

Once you've specified a project template as the default, Delphi opens it automatically
whenever you choose File | New | Application.

In the same way that you specify a default project, you can specify a default new form
and a default main form from a list of existing form templates in the Object Repository.
The default new form is the form created when you choose File | New | Form to add
an additional form to an open project. The default main form is the form created
when you open a new application. If you haven’t specified a default form, Delphi

uses a blank form.

You can override your default project or form temporarily by choosing File | New |
Other and selecting a different template from the New Items dialog box.

For more information...

See “templates, adding to Object Repository,

7

projects, specifying default,” and

“forms, specifying default” in the online Help index.

Adding templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse and share
with other developers over a network. Reusing objects lets you build families of
applications with common user interfaces and functionality that reduces

development time and improves quality.

5-10 Quick Start

Setting tool preferences

For example, to add a project to the Repository as a template, first save the project
and choose Project | Add To Repository. Complete the Add to Repository dialog box.

Title: . Lo
[Proet® Enter a title, description,
Desciptior: and author. In the Page list
IGeneric form with check box and button box: ChOIOSe ProleCts SO that
Pags . your project will appear on
[oeets =1 [AC Compond the Repository’s Projects
tabbed page.

e SElECE 3N icON L0 T8present this project:
Browse. |

akK I Cancel | Help |

The next time you open the New Items dialog box, your project template will appear
on the Projects page (or the page to which you had saved it). To make your template
the default every time you open Delphi, see “Specifying project and form templates
as the default” on page 5-9.

For more information...
See “templates, adding to Object Repository” in the online Help index.

Setting tool preferences

You can control many aspects of the appearance and behavior of the IDE, such as the
Form Designer, Object Inspector, and Code Explorer. These settings affect not just the
current project, but projects that you open and compile later. To change global IDE
settings for all projects, choose Tools | Environment Options.

For more information...

See “Environment Options dialog box” in the online Help indeX, or click the Help
button on any page in the Environment Options dialog box.

Customizing the Form Designer

The Designer page of the Tools | Environment Options dialog box has settings that
affect the Form Designer. For example, you can enable or disable the “snap to grid”
feature, which aligns components with the nearest grid line; you can also display or
hide the names, or captions, of nonvisual components you place on your form.

For more information...

In the Environment Options dialog box, click the Designer page and click the Help
button.

Customizing the desktop 5-11

Setting tool preferences

Customizing the Code Editor

One tool you may want to customize right away is the Code editor. Several pages in
the Tools | Editor Options dialog box have settings for how you edit your code. For
example, you can choose keystroke mappings, fonts, margin widths, colors, syntax
highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. To learn about these tools, see “Code
Insight” on page 2-7.

For more information...

In the Editor Options dialog box, click the Help button on the General, Display, Key
Mappings, Color, and Code Insight pages.

Customizing the Code Explorer

When you start Delphi, the Code Explorer (described in “The Code Explorer” on
page 2-11) opens automatically. If you don’t want Code Explorer to open
automatically, choose Tools | Environment Options, click the Explorer tab, and
uncheck Automatically show Explorer.

You can change the way the Code Explorer’s contents are grouped within the Code
Explorer by right-clicking in the Code Explorer, choosing Properties, and, under
Explorer categories, checking and unchecking the check boxes. If a category is
checked, elements in that category are grouped under a single node. If a category is
unchecked, each element in that category is displayed independently on the
diagram’s trunk. For example, if you uncheck the Published category, the Published
folder disappears but not the items in it.

Environment Options [x]

Twpelibray | EnvionmentVarsbles | DelphiDiect | Imemet |
Preferences | Designer | Objectlnspecter | Paette | Librap Explorer

‘[~ Esploreroptions ——— Explaret calegories
W Automaticaly show E xplorer Private
In the Code Exolorer. vo [+ Highlight incomplete class items i Protected
X| i Vi Public .
p , you I~ Show declarstion sprtas B To display the folder for

can sort all source elements S E each type of source

i i & blphapetica i Pioperties €
mhhe e R | mee

v i Classes
in the source file. | ';a;mmp‘e..mmm _ T1 et Explorer, check an
Finish incomplete properties
Initial browser wie:
& Classes Units ¢ Globals

[(e Explorer category.
Browser scop:
@ Project symbols anly
|| € &l symbals WCL included)

V4 Types
V4 Vaiiables/Constants
Vi Uses

[22 Introduced

Cancel Help

For more information...
See “Code Explorer, Environment options” in the online Help index.

5-12 Quick Start

Index

A

About box, adding 4-24
action bands 4-13
Action Manager editor 4-7 to 4-10
actions, adding to an application 4-7,4-9
ActiveX
Component palette page 3-12
installing controls 5-9
adding components to a form 4-3, 4-13
adding items to Object Repository 2-5
ADO 3-10
applications
compiling and debugging 3-6, 4-15
creating 3-1,3-9
database 3-10
deploying 3-8
internationalizing 3-8
Web server 3-9

BDE 3-10

BDE Administrator 3-10

bitmaps, adding to an application 4-10

Borland Component Library for Cross Platform
(CLX) 3-5

Browser 2-13

C

character sets, extended 3-8

Class Completion 2-8

class libraries 3-5

classes, defined 4-4

closing a form 4-3

CLX
adding components 2-3
applications, creating 3-9
defined 3-5

code
event handlers 3-5
help in writing 2-7 to 2-8
viewing and editing 2-6 to 2-12
writing 3-5

code completion 2-7

Code editor
combining with other windows 5-2
customizing 5-12
using 2-6 to 2-9

Code Explorer
customizing 5-12
using 2-11
Code Insight tools 2-7
Code Parameters 2-7
Code Templates 2-7
compiling applications 3-6
Component palette
adding custom components 3-11
adding pages 5-5
customizing 5-5 to 5-8
defined 2-3
using 3-2
component templates, creating 5-6
components
adding to a form 3-2,4-3
adding to Component palette 5-5
arranging on Component palette 5-5
creating custom 3-11
customizing 3-11, 5-6
defined 4-3
installing 3-11, 5-7
setting properties 3-3, 4-2
context menus, accessing 2-3
controls, adding to a form 3-2, 4-3
customizing
Code editor 5-12
Code Explorer 5-12
Component palette 2-2
Form Designer 5-11
IDE 5-1 to 5-12

D

Data Dictionary 3-11
data modules
adding 3-2
creating 2-5
database applications, creating 3-10
Database Desktop 3-11
Database Explorer 3-11
dbExpress 3-10
debugging programs 3-6 to 3-7, 4-15
default
project and form templates 5-9
project options 5-9
Delphi
customizing 5-1 to 5-12
introduction 1-1
programming 3-1
starting 2-1

Index

11

deploying applications 3-8
design-time view, closing forms 4-3
desktop

organizing 5-1to 5-5

saving layouts 5-4
developer support 1-4
.dfm files 2-10, 4-1
Diagram page 2-9
dialog boxes, in Object Repository 2-5
DLLs

creating 2-5

defined 3-12

deploying 3-8
docking windows 5-2 to 5-4
documentation, ordering 1-3
.dpr files 4-1

E

Editing StatusBar1.Panels dialog box 4-5
Editor Options dialog box 2-8, 5-12
Environment Options dialog box 2-8, 5-11
error messages 4-21
event handlers

creating 4-16 to 4-21

defined 3-5
executables, deploying 3-8

F

files
form 2-10, 4-1
project 4-1
resource 4-2
saving 4-2
unit 4-1
Form Designer
customizing 5-11
defined 2-4
form files
defined 4-1
viewing code 2-10
forms
adding components to 3-2, 4-3
closing 4-3
finding 2-5
main 4-2,5-10
specifying as default 5-10
frames 5-8

G

global symbols 2-13
GUlIs, creating 4-2

I-2 Quick Start

H

Help files, adding to an application 4-22
Help tooltips 4-4
Help, F1 1-2

IDE
customizing 5-1 to 5-12
defined 1-1
organizing 5-1
tour of 2-1
images, adding to an application 4-10
IMEs 3-8
information, finding 1-1
input method editors 3-8
installing custom components 5-7
integrated debugger 3-6
integrated development environment (IDE)
customizing 5-1 to 5-12
tour of 2-1
InterBase 3-10
internationalizing applications 3-8

K

keystroke mappings 5-12
Kylix
defined 1-1
developing applications for 3-9

L

localizing applications 3-8

M

main form, defined 5-10
menus
adding to an application 4-13
context 2-3
in Delphi 2-3
organizing 2-2, 5-1
messages, error 4-21

N

new features 1-2

new form, defined 5-10

New Items dialog box
saving templates to 5-9, 5-11
using 2-5, 4-24

newsgroups 1-4

o)

Object Inspector
defined 2-4
inline component references 3-4
using 3-3 to 3-4, 4-2

Object Repository
adding templates to 5-9, 5-10
defined 2-5, 3-1
using 2-5to 2-6

Object TreeView 2-4

objects, defined 3-5

ODBC 3-10

online Help files 1-2

options, setting for projects 5-9

P

packages 5-7
Paradox 3-10
parent-child relationships 2-4
.pas files 4-1
programming with Delphi 3-1
programs
CLX applications 3-9
compiling and debugging 3-6, 4-15
deploying 3-8
internationalizing 3-8
Web server applications 3-9
Project Browser 2-13
project files, default names 4-1
project groups 2-12
Project Manager 2-12
Project Options dialog box 5-9
project templates 5-10
projects
adding items to 2-5
creating 3-1
managing 2-12
saving 4-2
setting options as default 5-9
specifying as default 5-9
types 3-8 to 3-11
properties, setting 3-3, 4-2, 4-8, 4-9

R

Resource DLL Wizard 3-8
resource files (.res) 4-2
right-click menus 2-3

running an application 3-6, 4-15

S

sample program 4-1 to 4-27
saving

desktop layouts 5-4
projects 4-2
setting properties 3-3, 4-2, 4-8, 4-9
source code
files 4-1
help in writing 2-7 to 2-8
SQL database servers 3-10
SQL Explorer 3-11
SQL Links 3-10
SQL Server 3-10
starting Delphi 2-1
support services 1-4

T

tabbed windows, docking 5-4

technical support 1-4

templates
adding to Object Repository 5-10
specifying as default 5-9

text editor tutorial 4-1 to 4-27

to-do lists 2-13

tool windows, docking 5-2

toolbars 2-2

adding and deleting components from 5-2

adding to an application 4-14
organizing 5-1
Tooltip Expression Evaluation 2-7
Tooltip Symbol Insight 2-7
tooltips 4-4
translation tools 3-8
tutorial 4-1 to 4-27
type libraries, defined 3-12
typographic conventions 1-4

U

unit files 4-1
user interfaces, creating 3-2,4-2,4-3

vV

Visual Component Library (VCL)
adding components 2-3
using 3-5

w

Web server applications, creating 3-9
Web site, Borland 1-4

WebSnap, introduction 3-9
windows, combining 5-2

wizards, finding 2-5

X

xfm files 2-10

Index

I3

I-4 Quick Start

	Quick Start
	Contents
	Ch1: Introduction
	What is Delphi?
	Finding information
	Online Help
	F1 Help

	Printed documentation
	Developer support services and Web site
	Typographic conventions

	Ch2: A tour of the desktop
	Starting Delphi
	The IDE
	The menus and toolbars
	The Component Palette, Form Designer, and Object Inspector
	The Object TreeView
	The Object Repository
	The Code Editor
	The Diagram page
	Viewing form code

	The Code Explorer
	The Project Manager
	The Project Browser
	To-do lists

	Ch3: Programming with Delphi
	Creating a project
	Adding data modules

	Building the user interface
	Placing components on a form
	Setting component properties

	Writing code
	Writing event handlers
	Using the VCL and CLX libraries

	Compiling and debugging projects
	Deploying applications
	Internationalizing applications
	Types of projects
	CLX applications
	Web server applications
	Database applications
	Custom components
	DLLs
	COM and ActiveX

	Ch4: Creating a text editor—a tutorial
	Starting a new application
	Setting property values
	Adding components to the form
	Adding support for a menu and a toolbar
	Adding actions to the action manager
	Adding standard actions to the action manager
	Adding images to the image list

	Adding a menu
	Adding a toolbar
	Clearing the text area (optional)

	Writing event handlers
	Creating an event handler for the New command
	Creating an event handler for the Open command
	Creating an event handler for the Save command
	Creating an event handler for the Save As command

	Creating a Help file
	Creating an event handler for the Help Contents command
	Creating an event handler for the Help Index command

	Creating an About box
	Completing your application

	Ch5: Customizing the desktop
	Organizing your work area
	Arranging menus and toolbars
	Docking tool windows
	Saving desktop layouts

	Customizing the Component palette
	Arranging the Component palette
	Creating component templates
	Installing component packages

	Setting project options
	Setting default project options

	Specifying project and form templates as the default
	Adding templates to the Object Repository

	Setting tool preferences
	Customizing the Form Designer
	Customizing the Code Editor
	Customizing the Code Explorer

	Index

